Skip to main content

A Study of the Mechanical Properties of Al6061-Zr1,2 Alloy Processed by Laser Beam Melting

Abstract

The present paper proposes an experimental study to determine the mechanical properties of an additively manufactured modified Al6061 alloy, where the addition of 2 vol.% of yttrium-stabilized zirconia (YSZ) to Al6061 base powder allows to fully remove cracks during laser beam melting processing. To this end, Vickers tests, tensile tests, Charpy tests and microstructural analyses are used. With respect to the building direction, a quasi-isotropic response is highlighted, on as-built material with properties (engineering yield and ultimate strengths) higher than the wrought 6061 alloy. This improvement can be attributed to the extra-fine microstructure, a large dislocation density and a specific precipitation/solution trapping behavior associated with the Zr addition. Besides, the alloy showed excellent tensile response reproducibility. Thereafter, effect of post-heat treatments is investigated. Classic T6 from wrought alloys practice allowed to precipitate well-known and reported nano-β″-MgxSiy phases, improving the yield and ultimate strengths, but at the expense of significant grain coarsening. The mechanical properties are further increased through an adapted heat treatment, specifically designed for this Al6061 modified alloy. Al3Zr hardening nanoprecipitates are responsible of the improved yield response observed after an annealing for 2 h at 400 °C. The competition between these different hardening precipitation phases (nano-β″/nano-Al3Zr) is finally discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. C.F. Tan and M.R. Said, Effect of Hardness Test on Precipitation Hardening Aluminium Alloy 6061–T6, Chiang Mai J. Sci., 2009, 36, p 276–286.

    CAS  Google Scholar 

  2. H. Li, Characterizations of Precipitation Behavior of Al-Mg-Si Alloys Under Different Heat Treatments, China Foundry, 2018, 15, p 89–96.

    CAS  Article  Google Scholar 

  3. A.K. Gupta, D.J. Lloyd and S.A. Court, Precipitation Hardening in Al-Mg-Si Alloys with and Without Excess Si, Mater. Sci. Eng. A., 2001, 316, p 11–17. https://doi.org/10.1016/S0921-5093(01)01247-3

    Article  Google Scholar 

  4. S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Tráholt, U. Tundal and O. Reiso, The Crystal Structure of the B’’ Phase in Al-Mg-Si Alloys, Acta Mater., 1998, 46, p 3283–3298.

    CAS  Article  Google Scholar 

  5. S.J. Andersen, C.D. Marioara, R. Vissers, A. Frøseth and H.W. Zandbergen, The Structural Relation Between Precipitates in Al-Mg-Si alloys, the Al-Matrix and Diamond Silicon, with Emphasis on the Trigonal Phase U1-MgAl2Si2, Mater. Sci. Eng. A., 2007, 444, p 157–169. https://doi.org/10.1016/j.msea.2006.08.084

    CAS  Article  Google Scholar 

  6. S.J. Andersen, C.D. Marioara, A. Frøseth, R. Vissers and H.W. Zandbergen, Crystal Structure of the Orthorhombic U2-Al4Mg4Si4 Precipitate in the Al-Mg-Si Alloy System and its Relation to the β′ and β″ Phases, Mater. Sci. Eng. A., 2005, 390, p 127–138. https://doi.org/10.1016/j.msea.2004.09.019

    CAS  Article  Google Scholar 

  7. R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara and S.J. Andersen, The Crystal Structure of the β′ Phase in Al-Mg-Si Alloys, Acta Mater., 2007, 55, p 3815–3823. https://doi.org/10.1016/j.actamat.2007.02.032

    CAS  Article  Google Scholar 

  8. N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck and R. Hague, 3D Printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys Using Selective Laser Melting, Prog. Mater. Sci., 2019, 106, p 100578. https://doi.org/10.1016/j.pmatsci.2019.100578

    CAS  Article  Google Scholar 

  9. D. Jafari and W.W. Wits, The Utilization of Selective Laser Melting Technology on Heat Transfer Devices for Thermal Energy Conversion Applications: A Review, Renew. Sustain. Energy Rev., 2018, 91, p 420–442. https://doi.org/10.1016/j.rser.2018.03.109

    Article  Google Scholar 

  10. L. Thijs, K. Kempen, J.-P. Kruth and J. Van Humbeeck, Fine-Structured Aluminium Products with Controllable Texture by Selective Laser Melting of Pre-Alloyed AlSi10Mg Powder, Acta Mater., 2013, 61, p 1809–1819. https://doi.org/10.1016/j.actamat.2012.11.052

    CAS  Article  Google Scholar 

  11. T. Kimura and T. Nakamoto, Microstructures and Mechanical Properties of A356 (AlSi7Mg0.3) Aluminum Alloy Fabricated by Selective Laser Melting, Mater. Des., 2016, 89, p 1294–1301. https://doi.org/10.1016/j.matdes.2015.10.065

    CAS  Article  Google Scholar 

  12. A. Aversa, G. Marchese, A. Saboori, E. Bassini, D. Manfredi, S. Biamino, D. Ugues, P. Fino and M. Lombardi, New Aluminum Alloys Specifically Designed for Laser Powder Bed Fusion: A Review, Materials, 2019, 12, p 1007. https://doi.org/10.3390/ma12071007

    CAS  Article  Google Scholar 

  13. M.L. Montero-Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. Van Hooreweder, J.-P. Kruth and J. Van Humbeeck, Changing the Alloy Composition of Al7075 for Better Processability Byselective Laser Melting, J. Mater. Process. Technol., 2016, 238, p 437–445.

    CAS  Article  Google Scholar 

  14. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler and T.M. Pollock, 3D Printing of High-Strength Aluminium Alloys, Nature, 2017, 549, p 365–369.

    CAS  Article  Google Scholar 

  15. M. Opprecht, J.-P. Garandet, G. Roux, C. Flament and M. Soulier, A Solution to the Hot Cracking Problem for Aluminium Alloys Manufactured by Laser Beam Melting, Acta Mater., 2020, 197, p 40–53. https://doi.org/10.1016/j.actamat.2020.07.015

    CAS  Article  Google Scholar 

  16. A. Sonawane, G. Roux, J.-J. Blandin, A. Despres and G. Martin, Cracking Mechanism and its Sensitivity to Processing Conditions During Laser Powder Bed Fusion of a Structural Aluminum Alloy, Acta Mater., 2021, 15, p 100976. https://doi.org/10.1016/j.mtla.2020.100976

    CAS  Article  Google Scholar 

  17. H. Hyer, L. Zhou, A. Mehta and Y. Sohn, Effects of Alloy Composition and Solid-State Diffusion Kinetics on Powder Bed Fusion Cracking Susceptibility, J. Phase Equilibria Diffus., 2021, 42, p 5–13. https://doi.org/10.1007/s11669-020-00844-y

    CAS  Article  Google Scholar 

  18. H. Hyer, L. Zhou, A. Mehta, S. Park, T. Huynh, S. Song, Y. Bai, K. Cho, B. McWilliams and Y. Sohn, Composition-Dependent Solidification Cracking of Aluminum-Silicon Alloys During Laser Powder Bed Fusion, Acta Mater., 2021, 208, p 116698. https://doi.org/10.1016/j.actamat.2021.116698

    CAS  Article  Google Scholar 

  19. A.R. Zulhishamuddin, S.N. Aqida and M. Mohd Rashidi, A Comparative Study on Wear Behaviour of Cr/Mo surface Modified Grey Cast Iron, Opt. Laser Technol., 2018, 104, p 164–169. https://doi.org/10.1016/j.optlastec.2018.02.027

    CAS  Article  Google Scholar 

  20. S. Griffiths, M.D. Rossell, J. Croteau, N.Q. Vo, D.C. Dunand and C. Leinenbach, Effect of Laser Rescanning on the Grain Microstructure of a Selective Laser Melted Al-Mg-Zr Alloy, Mater. Charact., 2018, 143, p 34–42. https://doi.org/10.1016/j.matchar.2018.03.033

    CAS  Article  Google Scholar 

  21. M. Awd, J. Tenkamp, M. Hirtler, S. Siddique, M. Bambach and F. Walther, Comparison of Microstructure and Mechanical Properties of Scalmalloy® Produced by Selective Laser Melting and Laser Metal Deposition, Materials, 2017, 11, p 17. https://doi.org/10.3390/ma11010017

    CAS  Article  Google Scholar 

  22. D. Koutny, D. Palousek, L. Pantelejev, C. Hoeller, R. Pichler, L. Tesicky and J. Kaiser, Influence of Scanning Strategies on Processing of Aluminum Alloy EN AW 2618 Using Selective Laser Melting, Materials, 2018, 11, p 298. https://doi.org/10.3390/ma11020298

    CAS  Article  Google Scholar 

  23. Q. Jia, P. Rometsch, S. Cao, K. Zhang and X. Wu, Towards a High Strength Aluminium Alloy Development Methodology for Selective Laser Melting, Mater. Des., 2019, 174, p 107775. https://doi.org/10.1016/j.matdes.2019.107775

    CAS  Article  Google Scholar 

  24. Q. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A. Huang, M. Weyland, L. Bourgeois and X. Wu, Selective Laser Melting of a High Strength Al Mn Sc Alloy: Alloy Design and Strengthening Mechanisms, Acta Mater., 2019, 171, p 108–118. https://doi.org/10.1016/j.actamat.2019.04.014

    CAS  Article  Google Scholar 

  25. E.A. Jägle, Z. Sheng, L. Wu, L. Lu, J. Risse, A. Weisheit and D. Raabe, Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing, JOM, 2016, 68, p 943–949. https://doi.org/10.1007/s11837-015-1764-2

    CAS  Article  Google Scholar 

  26. N.V. Dynin, V.V. Antipov, D.V. Khasikov, I. Benarieb, A.V. Zavodov and A.G. Evgenov, Structure and Mechanical Properties of an Advanced Aluminium Alloy AlSi10MgCu(Ce, Zr) Produced by Selective Laser Melting, Mater. Lett., 2021, 284, p 128898. https://doi.org/10.1016/j.matlet.2020.128898

    CAS  Article  Google Scholar 

  27. L. Zhou, H. Hyer, J. Chang, A. Mehta, T. Huynh, Y. Yang and Y. Sohn, Microstructure, Mechanical Performance, and Corrosion Behavior of Additively Manufactured Aluminum Alloy 5083 with 0.7 and 1.0 wt% Zr Addition, Mater. Sci. Eng. A., 2021, 823, p 141679. https://doi.org/10.1016/j.msea.2021.141679

    CAS  Article  Google Scholar 

  28. H. Hyer, L. Zhou, S. Park, T. Huynh, A. Mehta, S. Thapliyal, R.S. Mishra and Y. Sohn, Elimination of Extraordinarily High Cracking Susceptibility of Aluminum Alloy Fabricated by Laser Powder Bed Fusion, J. Mater. Sci. Technol., 2022, 103, p 50–58. https://doi.org/10.1016/j.jmst.2021.06.023

    Article  Google Scholar 

  29. J. Zhang, J. Gao, B. Song, L. Zhang, C. Han, C. Cai, K. Zhou and Y. Shi, A Novel Crack-Free Ti-Modified Al-Cu-Mg Alloy Designed for Selective Laser Melting, Addit. Manuf., 2021, 38, p 101829. https://doi.org/10.1016/j.addma.2020.101829

    CAS  Article  Google Scholar 

  30. Q. Tan, J. Zhang, Q. Sun, Z. Fan, G. Li, Y. Yin, Y. Liu and M.-X. Zhang, Inoculation Treatment of an Additively Manufactured 2024 Aluminium Alloy with Titanium Nanoparticles, Acta Mater., 2020, 196(2020), p 1–16. https://doi.org/10.1016/j.actamat.2020.06.026

    CAS  Article  Google Scholar 

  31. M. Opprecht, J.-P. Garandet, G. Roux and C. Flament, An Understanding of Duplex Microstructures Encountered During High Strength Aluminium Alloy Laser Beam Melting Processing, Acta Mater., 2021, 215, p 117024. https://doi.org/10.1016/j.actamat.2021.117024

    CAS  Article  Google Scholar 

  32. A. Mehta, L. Zhou, T. Huynh, S. Park, H. Hyer, S. Song, Y. Bai, D.D. Imholte, N.E. Woolstenhulme, D.M. Wachs and Y. Sohn, Additive Manufacturing and Mechanical Properties of the Dense and Crack Free Zr-Modified Aluminum Alloy 6061 Fabricated by the Laser-Powder Bed Fusion, Addit. Manuf., 2021, 41, p 101966. https://doi.org/10.1016/j.addma.2021.101966

    CAS  Article  Google Scholar 

  33. F. Wang, D. Qiu, Z. Liu, J. Taylor, M. Easton and M. Zhang, Crystallographic Study of Al3Zr and Al3Nb as Grain Refiners for Al Alloys, Trans. Nonferrous Met. Soc. China, 2014, 24, p 2034–2040.

    CAS  Article  Google Scholar 

  34. L.-P. Lapierre-Boire, C. Blais, S. Pelletier and F. Chagnon, Improvement of Flow of an Iron-Copper-Graphite Powder Mix Through Additions of Nanoparticles, Powder Technol., 2016, 299, p 156–167. https://doi.org/10.1016/j.powtec.2016.05.046

    CAS  Article  Google Scholar 

  35. J. Yang, A. Sliva, A. Banerjee, R.N. Dave and R. Pfeffer, Dry Particle Coating for Improving the Flowability of Cohesive Powders, Powder Technol., 2005, 158, p 21–33.

    CAS  Article  Google Scholar 

  36. C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach and R. Poprawe, Formation and Reduction of Hydrogen Porosity During Selective Laser Melting of AlSi10Mg, J. Mater. Process. Technol., 2015, 221, p 112–120. https://doi.org/10.1016/j.jmatprotec.2015.02.013

    CAS  Article  Google Scholar 

  37. C. Fressengeas, B. Beausir, C. Kerisit, A.-L. Helbert, T. Baudin, F. Brisset, M.-H. Mathon, R. Besnard and N. Bozzolo, On the Evaluation of Dislocation Densities in Pure Tantalum from EBSD Orientation Data, Matér. Tech., 2018, 106, p 604. https://doi.org/10.1051/mattech/2018058

    CAS  Article  Google Scholar 

  38. F. Peyrouzet, D. Hachet, R. Soulas, C. Navone, S. Godet and S. Gorsse, Selective Laser Melting of Al0.3CoCrFeNi High-Entropy Alloy: Printability, Microstructure, and Mechanical Properties, JOM, 2019, 71, p 3443–3451. https://doi.org/10.1007/s11837-019-03715-1

    CAS  Article  Google Scholar 

  39. Y.J. Yin, J.Q. Sun, J. Guo, X.F. Kan and D.C. Yang, Mechanism of High Yield Strength and Yield Ratio of 316 L Stainless Steel by Additive Manufacturing, Mater. Sci. Eng. A., 2019, 744, p 773–777. https://doi.org/10.1016/j.msea.2018.12.092

    CAS  Article  Google Scholar 

  40. ASM Handbook, 10th ed., 1995

  41. L. Zhou, H. Hyer, S. Park, H. Pan, Y. Bai, K.P. Rice and Y. Sohn, Microstructure and Mechanical Properties of Zr-Modified Aluminum Alloy 5083 Manufactured by Laser Powder Bed Fusion, Addit. Manuf., 2019, 28, p 485–496. https://doi.org/10.1016/j.addma.2019.05.027

    CAS  Article  Google Scholar 

  42. B. Reyne, P.-Y. Manach and N. Moës, Macroscopic Consequences of Piobert-Lüders and Portevin–Le Chatelier Bands During Tensile Deformation in Al-Mg Alloys, Mater. Sci. Eng. A., 2019, 746, p 187–196. https://doi.org/10.1016/j.msea.2019.01.009

    CAS  Article  Google Scholar 

  43. T.V. Kumar, M. Indu, A.S. Gopal, A.V. Krishna and D.V. Reddy, Microstructure Study and Mechanical Testing of Al 6061-Si3n4 Metal Matrix Composites, Met. Matrix Compos., 2019, 8, p 5.

    Google Scholar 

  44. H. Mohammadi, A.R. Eivani, S.H. Seyedein and M. Ghosh, Modified Monte Carlo Approach for Simulation of Grain Growth and Ostwald Ripening in two-Phase Zn–22Al Alloy, J. Mater. Res. Technol., 2020, 9, p 9620–9631. https://doi.org/10.1016/j.jmrt.2020.06.017

    CAS  Article  Google Scholar 

  45. H. Mehrer, M. Luckabauer and W. Sprengel, Self- and Solute Diffusion, Interdiffusion and Thermal Vacancies in the System Iron-Aluminium, Defect Diffus. Forum, 2013, 333, p 1–25. https://doi.org/10.4028/www.scientific.net/DDF.333.1

    CAS  Article  Google Scholar 

  46. S.G. Fries and T. Jantzen, Compilation of `CALPHAD’ Formation Enthalpy Data Binary Intermetallic Compounds in the COST 507 Gibbsian database, Thermochim. Acta., 1998, 314, p 23–33.

    CAS  Article  Google Scholar 

  47. C. Flament, Etude des évolutions microstructurales sous irradiation de l’alliage d’aluminium 6061-T6, Université Grenoble Alpes, 2015

  48. S. Fang and Du. Li, Precipitation Sequence of an aged Al-Mg-Si Alloy, J Min. Metall. Sect. B-Met., 2010, 46, p 171–180.

    CAS  Article  Google Scholar 

  49. E. Clouet, A. Barbu, L. Lae and G. Martin, Precipitation Kinetics of AlZr and AlSc in Aluminum Alloys Modeled with Cluster Dynamics, Acta Mater., 2005, 53, p 2313–2325. https://doi.org/10.1016/j.actamat.2005.01.038

    CAS  Article  Google Scholar 

  50. J.R. Croteau, S. Griffiths, M.D. Rossell, C. Leinenbach, C. Kenel, V. Jansen, D.N. Seidman, D.C. Dunand and N.Q. Vo, Microstructure and Mechanical Properties of Al-Mg-Zr Alloys Processed by Selective Laser Melting, Acta Mater., 2018, 153, p 35–44. https://doi.org/10.1016/j.actamat.2018.04.053

    CAS  Article  Google Scholar 

  51. K.E. Knipling, D.C. Dunand and D.N. Seidman, Nucleation and Precipitation Strengthening in Dilute Al-Ti and Al-Zr Alloys, Metall. Mater. Trans. A., 2007, 38, p 2552–2563. https://doi.org/10.1007/s11661-007-9283-6

    CAS  Article  Google Scholar 

  52. K.E. Knipling, D.C. Dunand and D.N. Seidman, Precipitation Evolution in Al–Zr and Al–Zr–Ti Alloys During Isothermal Aging at 375-425 °C, Acta Mater., 2008, 56, p 114–127. https://doi.org/10.1016/j.actamat.2007.09.004

    CAS  Article  Google Scholar 

  53. A.V. Mikhaylovskaya, A.G. Mochugovskiy, V.S. Levchenko, NYu. Tabachkova, W. Mufalo and V.K. Portnoy, Precipitation Behavior of L12 Al3Zr Phase in Al-Mg-Zr Alloy, Mater. Charact., 2018, 139, p 30–37. https://doi.org/10.1016/j.matchar.2018.02.030

    CAS  Article  Google Scholar 

  54. A. Mehta, J. Dickson, R. Newell, D.D. Keiser and Y. Sohn, Interdiffusion and Reaction Between Al and Zr in the Temperature Range of 425 to 475 °C, J. Phase Equilibria Diffus., 2019, 40, p 482–494. https://doi.org/10.1007/s11669-019-00729-9

    CAS  Article  Google Scholar 

  55. Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He and F.-Y. Xie, Diffusion Coefficients of Some Solutes in Fcc and Liquid Al: Critical Evaluation and Correlation, Mater. Sci. Eng. A., 2003, 363, p 140–151. https://doi.org/10.1016/S0921-5093(03)00624-5

    CAS  Article  Google Scholar 

  56. K.E. Knipling, D.N. Seidman and D.C. Dunand, Ambient- and high-temperature mechanical properties of isochronally aged Al–0.06Sc, Al–0.06Zr and Al–0.06Sc–0.06Zr (at.%) alloys, Acta Mater., 2011, 59, p 943–954. https://doi.org/10.1016/j.actamat.2010.10.017

    CAS  Article  Google Scholar 

  57. Z. Jia, J. Røyset, J.K. Solberg and Q. Liu, Formation of Precipitates and Recrystallization Resistance in Al-Sc-Zr Alloys, Trans. Nonferrous Met. Soc. China, 2012, 22, p 1866–1871. https://doi.org/10.1016/S1003-6326(11)61399-X

    CAS  Article  Google Scholar 

  58. M.J. Jones and F.J. Humphreys, Interaction of Recrystallization and Precipitation: The Effect of Al3Sc on the Recrystallization Behaviour of Deformed Aluminium, Acta Mater., 2003, 51, p 2149–2159. https://doi.org/10.1016/S1359-6454(03)00002-8

    CAS  Article  Google Scholar 

  59. A. Deschamps and Y. Brechet, Influence of Predeformation and Ageing of an Al-Zn-Mg Alloy II: MODELING of Precipitation Kinetics and Yield Stress, Acta Mater., 1999, 47, p 293–305.

    CAS  Article  Google Scholar 

  60. M.J. Starink and S.C. Wang, A Model for the Yield Strength of Overaged Al-Zn-Mg-Cu Alloys, Acta Mater., 2003, 51, p 31–50.

    Article  Google Scholar 

  61. S. Thangaraju, M. Heilmaier, B.S. Murty and S.S. Vadlamani, On the Estimation of True Hall-Petch Constants and Their Role on the Superposition Law Exponent in Al Alloys, Adv. Eng. Mater., 2012, 14, p 892–897. https://doi.org/10.1002/adem.201200114

    CAS  Article  Google Scholar 

  62. E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. Sect. B., 1951, 64, p 747–753. https://doi.org/10.1088/0370-1301/64/9/303

    Article  Google Scholar 

  63. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25–28.

    CAS  Google Scholar 

  64. Y. Bréchet, J. Philibert, A. Vignes, and P. Combrade, Métallurgie du minerai au matériau, Dunod, 2013

  65. M.S.K.K.Y. Nartu, T. Alam, S. Dasari, S.A. Mantri, S. Gorsse, H. Siller, N. Dahotre and R. Banerjee, Enhanced Tensile Yield Strength in Laser Additively Manufactured Al0.3CoCrFeNi High Entropy Alloy, Materialia., 2020, 9, p 100522. https://doi.org/10.1016/j.mtla.2019.100522

    CAS  Article  Google Scholar 

  66. S. Zhang, H. Zhu, L. Zhang, W. Zhang, H. Yang and X. Zeng, Microstructure and properties in QCr0.8 alloy produced by selective laser melting with different heat treatment, J. Alloys Compd., 2019, 800, p 286–293. https://doi.org/10.1016/j.jallcom.2019.06.018

    CAS  Article  Google Scholar 

  67. B. Selva Babu, S. Sathiyaraj, A.K.P. Ramesh, B.A. Afridi and K. Kristo Varghese, Investigation of Machining Characteristics of Aluminium 6061 by Wire Cut EDM Process, Mater. Today Proc., 2020, 45, p 6247–6252. https://doi.org/10.1016/j.matpr.2020.10.698

    CAS  Article  Google Scholar 

  68. P. Cao, M. Qian and D.H. StJohn, Effect of Iron on Grain Refinement of High-Purity Mg-Al Alloys, Scr. Mater., 2004, 51, p 125–129. https://doi.org/10.1016/j.scriptamat.2004.03.039

    CAS  Article  Google Scholar 

  69. W. Lefebvre, N. Masquelier, J. Houard, R. Patte and H. Zapolsky, Tracking the Path of Dislocations Across Ordered Al3Zr Nano-Precipitates in Three Dimensions, Scr. Mater., 2014, 70, p 43–46. https://doi.org/10.1016/j.scriptamat.2013.09.014

    CAS  Article  Google Scholar 

  70. A.J. Ardell, Precipitation Hardening, Metall. Trans. A, 1985, 16, p 2131–2165.

    Article  Google Scholar 

  71. S. Gorsse, C. Hutchinson, M. Gouné and R. Banerjee, Additive Manufacturing of Metals: A Brief Review of the Characteristic Microstructures and Properties of Steels, Ti-6Al-4V and High-Entropy Alloys, Sci. Technol. Adv. Mater., 2017, 18, p 584–610. https://doi.org/10.1080/14686996.2017.1361305

    CAS  Article  Google Scholar 

  72. P.A. Hooper, Melt Pool Temperature and Cooling Rates in Laser Powder Bed Fusion, Addit. Manuf., 2018, 22, p 548–559. https://doi.org/10.1016/j.addma.2018.05.032

    CAS  Article  Google Scholar 

  73. L.-E. Loh, C.-K. Chua, W.-Y. Yeong, J. Song, M. Mapar, S.-L. Sing, Z.-H. Liu and D.-Q. Zhang, Numerical Investigation and an Effective Modelling on the Selective Laser Melting (SLM) Process with Aluminium Alloy 6061, Int. J. Heat Mass Transf., 2015, 80, p 288–300. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.014

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The TEM pictures were acquired at the CEA NanoCharacterization Platform (PFNC)—Minatec, thanks to the French RTB (IRT Nanoelec) and the equipex NanoID. The authors thanks Nathalie LADRAT for FIB lamella preparation. Céline RIBIERE is also acknowledged for her 3D printing technical assistance. M.O thanks Florian PEYROUZET for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Opprecht.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Opprecht, M., Roux, G., Garandet, JP. et al. A Study of the Mechanical Properties of Al6061-Zr1,2 Alloy Processed by Laser Beam Melting. J. of Materi Eng and Perform (2022). https://doi.org/10.1007/s11665-022-07218-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-022-07218-0

Keywords

  • aluminum alloy
  • hot cracking
  • laser beam melting
  • post-heat treatments
  • powder mixing
  • rapid solidification
  • strength response