Skip to main content

Advertisement

Log in

Production and Tribological Investigation of Cr Borides by Boriding of Powder Metallurgy Pure Chromium Surface

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Borides are considered advanced building materials due to their high melting temperature, hardness, wear/corrosion/oxidation resistance and excellent thermal and electrical properties. Among the many metal borides, chromium borides are known for their high electrical conductivity and high hardness. In this study, it is aimed to form CrxBx on powder metal pure Cr material and to examine its wear characteristics. For the production of samples, commercial purity Cr powders were mixed for 60 min and pressed under 850 MPa pressure to obtain raw samples. After pressing, the samples were boronized at 1000 ºC for 2, 4, 6 and 8 h, and a hard boride layer was formed on the outer surface. Hardness, abrasion tests and then then Field Emission Scanning Electron Microscopy, energy-dispersive x-ray spectroscopy and x-ray diffraction analyzes were applied to the samples obtained. It was determined that CrB, Cr2B, Cr2B3and Cr3B4 borides were formed on the surface with boronizing process and the hardness of these phases increased significantly. The wear resistance of P/M Cr specimens could also be improved by increasing the hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Kayali and E. Mertgenç, Investigation of Diffusion Kinetic Values of Boronized AISI 303 Steel by Pack Boronizing, Prot. Met. Phys. Chem. Surf., 2020, 56(1), p 151–155.

    Article  Google Scholar 

  2. N. Ucar et al., Boriding of Binary Ni-Ti Shape Memory Alloys, Zeıtschrıft Fur Naturforschung Sect. A-A J Phys. Sci., 2016, 71(11), p 1017–1020.

    CAS  Google Scholar 

  3. O. Allaoui, N. Bouaouadja, and G. Saindernan, Characterization of Boronized Layers on a XC38 Steel, Surf. Coat. Technol., 2006, 201, p 3475–3482.

    Article  CAS  Google Scholar 

  4. A. Ulukoy, A.C. Can, Y. Ozmen, S. Tasgetiren, and S., Borocarburizing of Decarburized Gears Made From 21NiCrMo2 (AISI 8620) Steel, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2015, 229(3), p 226–235.

    Article  CAS  Google Scholar 

  5. A.K Sinha, Boriding (Boronizing), (ASM Handbook, 1991). pp. 417.

  6. M. Kulka, N. Makuch, and M. Popławski, Two-stage Gas Boriding of Nisil in N2–H2–BCl3 Atmosphere, Surf. Coat. Technol., 2014, 244, p 78.

    Article  CAS  Google Scholar 

  7. N. Makuch and M. Kulka, Microstructural Characterization and Some Mechanical Properties of Gas-Borided Inconel 600-alloy, Appl. Surf. Sci., 2014, 314, p 1007.

    Article  CAS  Google Scholar 

  8. N. Makuch, M. Kulka, and A. Piasecki, The Effects of Chemical Composition of Nimonic 80A-alloy on the Microstructure and Properties of Gas-Borided Layer, Surf. Coat. Technol., 2015, 276, p 440.

    Article  CAS  Google Scholar 

  9. N. Makuch, M. Kulka, and D. Mikołajczak, Corrosion Behavior of Hard Boride Layer Produced on Nimonic 80A-alloy by Gas Boriding, Transactions of the IndianInstitute of Metals, 2017, 70(10), p 2509–2527.

    Article  CAS  Google Scholar 

  10. A. Grafvon Matuschka, Borieren im Wirbelbett, Boronizing, Hanser, 1980

  11. P. Dearnleyand and T. Bell, Engineering the Surface with Boron Based Materials, Surf. Eng., 1985, 1(3), p 203–217.

    Article  Google Scholar 

  12. J.H. Yoon, Y.K. Jee, and S.Y. Lee, Plasma Paste Boronizing of AISI 8620, 52100 and 440C Steels, Surf. Coat. Technol., 1999, 112, p 71.

    Article  CAS  Google Scholar 

  13. S. Ulker, I. Gunes, and S. Taktak, Investigation of Tribological Behaviour of Plasma Paste, 52100 and 440C steels, Indian J. Eng. Mater. Sci, 2011, 18, p 370.

    CAS  Google Scholar 

  14. S. Ulker, I. Gunes, and S. Taktak, Plasma Paste Boronizing of AISI 8620, 52100 and 440C steels, Mater. Des., 2011, 32, p 2380.

    Article  Google Scholar 

  15. M. Keddam et al., Characterization and Diffusion Kinetics of the Plasma Paste Borided AISI 440C steel, Trans. Indian. Inst. Met., 2017, 70, p 1377.

    Article  CAS  Google Scholar 

  16. M. Keddam et al., Mechanical Properties and Kinetics of Boride Layers on AISI D2 Steel Produced by Plasma Paste Boriding, Indian J. Eng. Mater. Sci. (IJEMS), 2021, 27(2), p 221–233.

    Google Scholar 

  17. Y. Gencer, Influence of Manganese on Pack Boriding Behaviour of Pure Iron, Surf. Eng., 2011, 27(8), p 634–638.

    Article  CAS  Google Scholar 

  18. I. Gunes, S. Ulker, and S. Taktak, Plasma Paste Boronizing of AISI 8620, 52100 and 440C Steels, Mater. Des., 2011, 32(4), p 2380–2386.

    Article  CAS  Google Scholar 

  19. C.A. Cuao-Moreu et al., Effect of the Catalyst Concentration, the Immersion Time and the Aging Time on the Morphology, Composition and Corrosion Performance of TEOS-GPTMS Sol-gel Coatings Deposited on the AZ31 Magnesium Alloy, Surf. Coat. Technol., 2015, 284, p 258–263.

    Google Scholar 

  20. M. Usta et al., A Comparative Study of Borided Pure Niobium, Tungsten and Chromium, Vacuum, 2006, 80(11–12), p 1321–1325.

    CAS  Google Scholar 

  21. R. Ribeiro, S. Ingole, M. Usta, C. Bindal, A.H. Ucisik, and H. Liang, A Tribological Comparison of Pure and Boronized Chromium, J. Tribol, 2006, 128(4), p 895–898.

    Article  CAS  Google Scholar 

  22. C.A. Cuao-Moreu et al., Tribological Behavior of Borided Surface on CoCrMo Cast alloy, Wear, 2019, 426–427, p 204–211.

    Article  Google Scholar 

  23. V.I. Dybkov, Thermochemical Boriding of Fe–5% Cr Alloy, Powder Metall. Met. Ceram., 2016, 55(11–12), p 651–655.

    Google Scholar 

  24. R.B. Kaner, J.J. Gilman, and S.H. Tolbert, Designing Superhard Materials, Science, 2005, 308, p 1268–1269.

    Article  CAS  Google Scholar 

  25. H.Y. Chung, M.B. Weinberger, J.B. Levine, A. Kavner, J.M. Yang, S.H. Tolbert et al., Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure, Science, 2007, 316, p 436–439.

    Article  CAS  Google Scholar 

  26. G. Gu, Q. Krauss and W. Steurer, Transition Metal Borides: Superhard Versus Ultra Incompressible, Adv. Mater., 2008, 20, p 3620–3626.

    Article  CAS  Google Scholar 

  27. J.B. Levine, S.H. Tolbert, and R.B. Kaner, Advancements in the Search for Superhard Ultra Incompressible Metal Borides, Adv. Funct. Mater., 2009, 19, p 3519–3533.

    Article  CAS  Google Scholar 

  28. R.W. Cumberland, M.B. Weinberger, J.J. Gilman, S.M. Clark, S.H. Tolbert, and R.B. Kaner, Osmium Diboride, an Ultra Incompressible Hard Material, J. Am. Chem. Soc., 2005, 127, p 7264–7265.

    Article  CAS  Google Scholar 

  29. M. Nath and B.A. Parkinson, A Simple Sol-Gel Synthesis of Superconducting MgB2 Nanowires, Adv. Mater., 2006, 18, p 1865–1868.

    Article  CAS  Google Scholar 

  30. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprazak, Binary Alloy Phase Diagram, 2nd ed.,( Vol. 1. ASM International, 1992), p. 473–81.

  31. J.K. Sonber, Ch.Murthy TSR, C. Subramanian, S. Kumar, R.K. Fotedar, A.K. Suri, Non-destructive Quantification of Total Boron and its Isotopic Composition in Boron Based Refractory Materials by PIGE and an Inter-comparison Study Using TIMS and Titrimetry, Int. J. Refract. Metals. Hard. Mater., 2009, 27:912–8

  32. J. Castaing, J. Danan, and M. Rieux, Calorimetric and Resistive Investigation of the Magnetic Properties of CrB2, Solid. State. Commun., 1972, 10, p 563–565.

    Article  CAS  Google Scholar 

  33. L.R. Jordan, A.J. Betts, K.L. Dahm, P.A. Dearnley, and G.A. Wright, Corrosion and Passivation Mechanism of Chromium Diboride Coatings on Stainless Steel, Corros. Sci., 2005, 47, p 10851096.

    Article  Google Scholar 

  34. K.L. Dahm, L.R. Jordan, J. Haase, and P.A. Dearnley, Magnetron Sputter Deposition of Chromium Diboride Coatings, Surf. Coat. Technol., 1998, 108–109, p 413–418.

    Article  Google Scholar 

  35. Y. Kaplan, M. Gülsün, and S. Aksöz, Formation of Boride Layers on a Commercially Pure Ti Surface Produced via Powder Metallurgy, Int. J. Mater. Res., 2021, 112(4), p 303–307.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors were supported within the scope of this study by Pamukkale University Scientific Research Projects project numbered 2020BSP004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidem Kaner.

Ethics declarations

Conflict of interest

The all of authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaner, S., Kaplan, Y., Pamuk, Ö. et al. Production and Tribological Investigation of Cr Borides by Boriding of Powder Metallurgy Pure Chromium Surface. J. of Materi Eng and Perform 32, 1017–1024 (2023). https://doi.org/10.1007/s11665-022-07195-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07195-4

Keywords

Navigation