Skip to main content

Correlative Analysis of Morphology–Mechanical–Corrosion Behavior of Conventional Nickel-Based and Nitrogen-Alloyed Nickel-Free Austenitic Stainless Steels

Abstract

High-nitrogen austenitic stainless steel (HNASS) has been considered a potential material for various applications during the past decade due to its excellent properties. The present study aims to understand the structure–properties correlation of nickel-based and nitrogen-alloyed nickel-free austenitic stainless steels. Alloys (304L, 316L, 904L, 202, and HNASS) selected are solutionized at 1100 °C for 02 h. All the above metallography specimens are subjected to morphological analysis using optical and scanning electron microscopy (SEM). Using Vickers hardness, tensile, face-bend ductility, and Charpy impact testing, mechanical properties are evaluated. Localized corrosion studies, viz. open-circuit potential and potentiodynamic polarization, are performed using three-electrode-based GillAC electrochemical potentiostat in an aerated 3.5% NaCl environment. Further, the double loop-electrochemical potentiokinetic reactivation (DL-EPR) technique is used to determine the degree of sensitization (DOS) in a 0.5 M H2SO4+0.01 M NH4SCN environment. Intergranular corrosion attack is observed qualitatively using an etch test following ASTM standard A-262 practice A. The current investigation established that HNASS achieved a favorable microstructure and an optimum combination of mechanical and corrosion properties. It is attributed to solid solution strengthening, grain refinement, and re-passivation tendency involved due to the presence of nitrogen .

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  1. Y. Yin, R. Faulkner and F. Starr, Austenitic Steels and Alloys for Power Plants, Structural Alloys for Power Plants. Elsevier, Netherlands, 2014, p 105–152. https://doi.org/10.1533/9780857097552.2.105

    Chapter  Google Scholar 

  2. P. Saravanan and V.S. Raja, “Localized Corrosion Behaviour of Nickel-Free High-Nitrogen 19Cr-18Mn0. 69N Austenitic Stainless Steel in 3.5 % NaCl. J. Steel Relat. Mater., 194–198 (2011)

  3. A. Di Schino, J.M. Kenny and M. Barteri, High Temperature Resistance of a High Nitrogen and Low Nickel Austenitic Stainless Steel, J. Mater. Sci. Lett., 2003, 22(9), p 691–693. https://doi.org/10.1023/A:1023675212900

    Article  Google Scholar 

  4. H.R. Zareie Rajani, H. Torkamani, M. Sharbati and S. Raygan, Corrosion Resistance Improvement in Gas Tungsten Arc Welded 316L Stainless Steel Joints Through Controlled Preheat Treatment, Mater. Des., 2012, 34, p 51–57. https://doi.org/10.1016/j.matdes.2011.07.071

    CAS  Article  Google Scholar 

  5. H. Ma, G. Qin, P. Geng, F. Li, X. Meng and B. Fu, Effect of Post-Weld Heat Treatment on Friction Welded Joint of Carbon Steel to Stainless Steel, J. Mater. Process. Technol., 2016, 227, p 24–33. https://doi.org/10.1016/j.jmatprotec.2015.08

    CAS  Article  Google Scholar 

  6. A.K. Gupta, H.N. Krishnamurthy, Y. Singh, K.M. Prasad and S.K. Singh, Development of Constitutive Models for Dynamic Strain Aging Regime in Austenitic-Stainless-Steel 304, Mater. Des., 2013, 45, p 616–627. https://doi.org/10.1016/j.matdes.2012.09.041

    CAS  Article  Google Scholar 

  7. X.Y. Wang and D.Y. Li, Mechanical, Electrochemical and Tribological Properties of Nano-Crystalline Surface of 304 Stainless Steel, Wear, 2003, 255(7–12), p 836–845. https://doi.org/10.1016/s0043-1648(03)00055-3

    CAS  Article  Google Scholar 

  8. K. Hashimoto, K. Asami, A. Kawashima, H. Habazaki and E. Akiyama, The Role of Corrosion-Resistant Alloying Elements in passivity, Corros. Sci., 2007, 49(1), p 42–52. https://doi.org/10.1016/j.corsci.2006.05.003

    CAS  Article  Google Scholar 

  9. V. Karthik, S. Murugan, P. Parameswaran, C.N. Venkiteswaran, K.A. Gopal, N.G. Muralidharan and K.V. Kasiviswanathan, Austenitic-Stainless-Steels for Fast Reactors-Irradiation Experiments, Property Evaluation and Microstructural Studies, Energy Proc., 2011, 7, p 257–263. https://doi.org/10.1016/j.egypro.2011.06.033

    CAS  Article  Google Scholar 

  10. P Sathiya, S Aravindan, P.M. Ajith, B Arivazhagan A Noorul Haq. Microstructural Characteristics on Bead on Plate Welding of AISI 904 L Super Austenitic Stainless Steel using Gas Metal arc Welding ProcessInt. J. Eng. Sci. Technol. 2 6 (2011) https://doi.org/10.4314/ijest.v2i6.63710

  11. M. Vahter, M. Berglund, A. Åkesson and C. Lidén, Metals and Women’s Health, Environ. Res., 2002, 88(3), p 145–155. https://doi.org/10.1006/enrs.2002.4338

    CAS  Article  Google Scholar 

  12. W. Bal, H. Kozłowski and K.S. Kasprzak, Molecular Models in Nickel Carcinogenesis, J. Inorg. Biochem., 2000, 79(1–4), p 213–218. https://doi.org/10.1016/s0162-0134(99)00169-5

    CAS  Article  Google Scholar 

  13. M. Talha, C.K. Behera and O.P. Sinha, A Review on Nickel-Free Nitrogen Containing Austenitic-Stainless-Steels for Biomedical Applications, Mater. Sci. Eng., C, 2013, 33(7), p 3563–3575. https://doi.org/10.1016/j.msec.2013.06.002

    CAS  Article  Google Scholar 

  14. K. Yang and Y. Ren, Nickel-Free Austenitic-Stainless-Steels for Medical Applications, Sci. Technol. Adv. Mater., 2010, 11(1), p 014105. https://doi.org/10.1088/1468-6996/11/1/014105

    CAS  Article  Google Scholar 

  15. Y. Jiang, M.L. Cheng, H.T. Jiang, Q.L. Zhou, M.X. Jiang, L.Z. Jiang and Y.M. Jiang, Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN103) High Strength Nitrogen Alloyed Low Nickel Austenitic Stainless, Acta Metall. Sin., 2020, 56, p 642–652. https://doi.org/10.11900/0412.1961.2019.00395

    CAS  Article  Google Scholar 

  16. Y Qiao, Z Tian, X Cai, J Chen, Y Wang, Q Song, H Li, Cavitation Erosion Behaviors of a Nickel-Free High-Nitrogen Stainless Steel Tribol. Lett. 67 1 (2018) https://doi.org/10.1007/s11249-018-1118-7

  17. H. Lin, M. Yang and B. Shu, Fretting Wear Behaviour of High-Nitrogen Stainless Bearing Steel under Lubrication Condition, J. Iron. Steel Res. Int., 2020, 27(7), p 849–866. https://doi.org/10.1007/s42243-020-00414-z

    CAS  Article  Google Scholar 

  18. R. Mohammed, G. Madhusudhan Reddy and K. Srinivasa Rao, Welding of Nickel-Free High Nitrogen Stainless Steel: Microstructure and Mechanical Characteristics, Def. Technol., 2017, 13(2), p 59–71. https://doi.org/10.1016/j.dt.2016.06.003

    Article  Google Scholar 

  19. B.B. Singh, G. Sukumar, A. Paman, G. Balaji, K. Siva Kumar, V. Madhu and R. Arockia Kumar, A Comparative Study on the Ballistic Performance and Failure Mechanisms of High-Nitrogen Steel and RHA Steel Against Tungsten Heavy Alloy Penetrators, J. Dyn. Behav. Mater., 2020, 7(1), p 60–80. https://doi.org/10.1007/s40870-020-00270-8

    Article  Google Scholar 

  20. Y. Qiao, S. Sheng, L. Zhang, J. Chen, L. Yang, H. Zhou, Y. Wang, Z. and Zheng, Friction and Wear Behaviors of a High Nitrogen Austenitic Stainless Steel Fe-19Cr-15Mn-0.66N. J. Min. Metall. Sect. B Metall., 57(2), 285–293 (2021) 10. 2298/JMMB201026025Q

  21. S. Kubota, Y. Xia and Y. Tomota, Work-Hardening Behavior and Evolution of Dislocation-microstructures in High-nitrogen Bearing Austenitic Steels, ISIJ Int., 1998, 38(5), p 474–481. https://doi.org/10.2355/isijinternational.38

    CAS  Article  Google Scholar 

  22. G. Paul, H. Chapman-Kpodo and A. Hendry, Effect of Enhancement in Surface Nitrogen Concentration on the Corrosion and Fatigue Properties of Austenitic Steel Wire Rod, ISIJ Int., 1996, 36(7), p 867–872. https://doi.org/10.2355/isijinternational.36

    CAS  Article  Google Scholar 

  23. X. Wu, Y. Fu, W. Ke, S. Xu, B. Feng and B. Hu, Effects of Nitrogen on Passivity of Nickel-Free Stainless Steels by Electrochemical Impedance Spectroscopy Analysis, J. Mater. Eng. Perform., 2015, 24(9), p 3607–3614. https://doi.org/10.1007/s11665-015-1646-3

    CAS  Article  Google Scholar 

  24. L. Xu, H. Li, H. Zheng, P. Lu, H. Feng, S. Zhang and Z. Jiang, Effects of Nitrogen Content on Pitting Corrosion Resistance of Non-Magnetic Drill Collar Steel, J.Iron Steel Res. Int., 2020, 27(12), p 1466–1475. https://doi.org/10.1007/s42243-020-00428-7

    CAS  Article  Google Scholar 

  25. Y. Fu, X. Wu, E.-H. Han, W. Ke, K. Yang and Z. Jiang, Effects of Nitrogen on the Passivation of Nickel-Free High Nitrogen and Manganese Stainless Steels in Acidic Chloride Solutions, Electrochim. Acta, 2009, 54(16), p 4005–4014. https://doi.org/10.1016/j.electacta.2009.02.024

    CAS  Article  Google Scholar 

  26. M. Sagara, Y. Katada and T. Kodama, Localized Corrosion Behavior of High Nitrogen-bearing Austenitic Stainless Steels in Seawater Environment, ISIJ Int., 2003, 43(5), p 714–719. https://doi.org/10.2355/isijinternational.43

    CAS  Article  Google Scholar 

  27. Y. Fu, X. Wu, E. Han, W. Ke, K. Yang and Z. Jiang, Influence of Cold Work on Pitting Corrosion Behavior of a High Nitrogen Stainless Steel, J. Electrochem. Soc., 2008, 155(8), p C455–C463. https://doi.org/10.1149/1.2939213

    CAS  Article  Google Scholar 

  28. V. Vijayan, G. Ravichandran, M. Rao and S. Karinka, Failure Analysis of the High Nitrogen Austenitic Stainless-Steel Boiler Tank Weldments, J. Fail. Anal. Prev., 2021 https://doi.org/10.1007/s11668-021-01142-6

    Article  Google Scholar 

  29. Astm, Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, Practice, no. C, pp. 1–7, (2011)

  30. Recommended Practices for Detecting Susceptibility to Intergranular Corrosion in Stainless Steels, A-262-02, ASTM Annual Book, Vol. 3.02, ASTM Publications, Philadelphia, PA, (2002)

  31. M. Naghizadeh and H. Mirzadeh, Elucidating the Effect of Alloying Elements on the Behavior of Austenitic Stainless Steels at Elevated Temperatures, Metall. and Mater. Trans. A., 2016, 47(12), p 5698–5703. https://doi.org/10.1007/s11661-016-3764-4

    CAS  Article  Google Scholar 

  32. G. Stornelli, M. Gaggiotti, S. Mancini, G. Napoli, C. Rocchi, C. Tirasso and A. Di Schino, Recrystallization and Grain Growth of AISI 904L Super-Austenitic Stainless Steel: A Multivariate Regression Approach, Metals, 2022, 12(2), p 200. https://doi.org/10.3390/met12020200

    CAS  Article  Google Scholar 

  33. V. Kain, Stress Corrosion Cracking (SCC) in Stainless Steels, Stress corrosion cracking. Elsevier, Netherlands, 2011, p 199–244. https://doi.org/10.1533/9780857093769.3.199

    Chapter  Google Scholar 

  34. D.T. Llewellyn and R.C. Hudd, Steels Metallurgy and Applications, 3rd ed. Elsevier, Netherlands, 1998.

    Google Scholar 

  35. R. Mohammed, G.M. Reddy and K.S. Rao, Effect of Filler Wire Composition on Microstructure and Pitting Corrosion of Nickel Free High Nitrogen Stainless Steel GTA Welds, Trans. Indian Inst. Met., 2016, 69(10), p 1919–1927. https://doi.org/10.1007/s12666-016-0851-6

    CAS  Article  Google Scholar 

  36. R. Spolenak, O. Kraft and E. Arzt, Effects of Alloying Elements on Electromigration, Microelectron. Reliab., 1998, 38(6–8), p 1015–1020. https://doi.org/10.1016/s0026-2714(98)00110-3

    Article  Google Scholar 

  37. K. Kako, E. Kawakami, J. Ohta and M. Mayuzumi, Effects of Various Alloying Elements on Tensile Properties of High-Purity Fe-18Cr-(14–16)Ni Alloys at Room Temperature, Mater. Trans., 2002, 43(2), p 155–162. https://doi.org/10.2320/matertrans.43.155

    CAS  Article  Google Scholar 

  38. V.I. Shapochkin, L.M. Semenova, Y.S. Bakhracheva, E.L. Gyulikhandanov and S.V. Semenov, Effect of Nitrogen Content on the Structure and Properties of Nitrocarburized Steel, Met. Sci. Heat Treat., 2010, 52(9–10), p 413–419. https://doi.org/10.1007/s11041-010-9293-7

    CAS  Article  Google Scholar 

  39. M.D Mathew and VS. Srinivasan, Mechanical Behaviour of Nitrogen-bearing Steels. In: U.Kamachi Mudali and Baldev Raj editors. Monograph on High Nitrogen Austenitic Steels and Stainless Steels, New Delhi, Narosa Publications, 182–204 (2004)

  40. G. Raffi Mohammed, K. Madhusudhan Reddy and S. Rao, Microstructure and Pitting Corrosion of Shielded Metal Arc Welded High Nitrogen Stainless Steel, Def. Technol., 2015, 11(3), p 237–243. https://doi.org/10.1016/j.dt.2015.04.002

    Article  Google Scholar 

  41. M. O. Speidel, Properties and Applications of High Nitrogen Steels. High Nitrogen Steels-HNASS 88, 92–96 (1988)

  42. M.S. Sanusi, S.R. Shamsudin, A. Rahmat and R. Wardan, Electrochemical Corrosion Behaviours of AISI 304 Austenitic Stainless steel in NaCl Solutions at Different pH, AIP Conf. Proc., 2018, 2030, p 020116. https://doi.org/10.1063/1.5066757

    CAS  Article  Google Scholar 

  43. Q. Wang, B. Zhang, Y. Ren and K. Yang, Eliminating Detrimental Effect of Cold Working on Pitting Corrosion Resistance in High Nitrogen Austenitic Stainless Steels, Corros. Sci., 2017, 123, p 351–355. https://doi.org/10.1016/j.corsci.2017.04.006

    CAS  Article  Google Scholar 

  44. Q. Wang, B. Zhang, Y. Ren and K. Yang, A Self-Healing Stainless Steel: Role of Nitrogen in Eliminating Detrimental Effect of Cold Working on Pitting Corrosion Resistance, Corros. Sci., 2018 https://doi.org/10.1016/j.corsci.2018.09.013

    Article  Google Scholar 

  45. L. Vehovar, A. Vehovar, M. Metikoš-Huković and M. Tandler, Investigations into the Stress Corrosion Cracking of Stainless Steel Alloyed with Nitrogen, Mater. Corros., 2002, 53(5), p 316–327. https://doi.org/10.1002/1521-4176(200205)53:5%3c316:aid-maco316%3e3.0.co;2-s

    CAS  Article  Google Scholar 

  46. F.M. Bayoumi and W.A. Ghanem, Effect of Nitrogen on the Corrosion Behavior of Austenitic Stainless Steel in Chloride Solutions, Mater. Lett., 2005, 59(26), p 3311–3314. https://doi.org/10.1016/j.matlet.2005.05.063

    CAS  Article  Google Scholar 

  47. H. Baba, T. Kodama and Y. Katada, Role of nitrogen on the corrosion behavior of austenitic stainless steels, Corros. Sci., 2002, 44(10), p 2393–2407. https://doi.org/10.1016/s0010-938x(02)00040-9

    CAS  Article  Google Scholar 

  48. R.F.A. Jargelius-Pettersson, Electrochemical Investigation of the Influence of Nitrogen Alloying on Pitting Corrosion of Austenitic Stainless Steels, Corros. Sci., 1999, 41(8), p 1639–1664. https://doi.org/10.1016/s0010-938x(99)00013-x

    CAS  Article  Google Scholar 

  49. I. Olefjord and L. Wegrelius, The Influence of Nitrogen on the Passivation of Stainless Steels, Corros. Sci., 1996, 38(7), p 1203–1220. https://doi.org/10.1016/0010-938x(96)00018-2

    CAS  Article  Google Scholar 

  50. H. Baba and Y. Katada, Effect of Nitrogen on Crevice Corrosion in Austenitic Stainless Steel, Corros. Sci., 2006, 48(9), p 2510–2524. https://doi.org/10.1016/j.corsci.2005.09.010

    CAS  Article  Google Scholar 

  51. F. Borgioli, E. Galvanetto and T. Bacci, Corrosion Behaviour of low Temperature Nitrided Nickel-Free, AISI 200 and AISI 300 Series Austenitic Stainless Steels in NaCl Solution, Corros. Sci., 2018, 136, p 352–365. https://doi.org/10.1016/j.corsci.2018.03.026

    CAS  Article  Google Scholar 

  52. G.H. Aydoğdu and M.K. Aydinol, Determination of Susceptibility to Intergranular Corrosion and Electrochemical Reactivation Behaviour of AISI 316L Type Stainless Steel, Corros. Sci., 2006, 48(11), p 3565–3583. https://doi.org/10.1016/j.corsci.2006.01.003

    CAS  Article  Google Scholar 

  53. A.V. Bansod, A.P. Patil, A.P. Moon and N.N. Khobragade, Intergranular Corrosion Behavior of Low-Nickel and 304 Austenitic Stainless Steels, J. Mater. Eng. Perform., 2016, 25(9), p 3615–3626. https://doi.org/10.1007/s11665-016-2221-2

    CAS  Article  Google Scholar 

  54. H.B. Li, Z.H. Jiang, Z.R. Zhang, Y. Cao and Y. Yang, Intergranular Corrosion Behavior of High Nitrogen Austenitic Stainless Steel, Int. J. Miner. Metall. Mater., 2009, 16(6), p 654–660. https://doi.org/10.1016/S1674-4799(10)60008-8

    CAS  Article  Google Scholar 

  55. W.-C. Jiao, H.-B. Li, J. Dai, H. Feng, Z.-H. Jiang, T. Zhang and S.-C. Zhang, Effect of Partial Replacement of Carbon by Nitrogen on Intergranular Corrosion Behavior of High Nitrogen Martensitic Stainless Steels, J. Mater. Sci. Technol., 2019, 35(10), p 2357–2364. https://doi.org/10.1016/j.jmst.2019.06.004

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffi Mohammed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sheik, S., Mohammed, R., Tirumalla, A. et al. Correlative Analysis of Morphology–Mechanical–Corrosion Behavior of Conventional Nickel-Based and Nitrogen-Alloyed Nickel-Free Austenitic Stainless Steels. J. of Materi Eng and Perform (2022). https://doi.org/10.1007/s11665-022-07171-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-022-07171-y

Keywords

  • nitrogen-alloyed nickel-free ASSs (HNASS)
  • open-circuit potential (OCP)
  • potentiodynamic polarization (PDP)
  • scanning electron microscopy (SEM)