Skip to main content
Log in

Influence of Initial Microstructure on the Hot Deformation Behavior of AZ80 Magnesium Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This research studies the hot deformation behavior of cast and extruded AZ80 magnesium alloys for forging applications. Uniaxial hot compression tests were carried out at a temperature of 400 °C and strain rates ranging from 0.001 to 0.1 s−1, to various strain levels up to a true strain of 1. Detailed microstructure and texture characterizations of the deformed samples were performed using electron backscatter diffraction and x-ray diffraction techniques. The results show that multiple dynamic recrystallization (DRX) mechanisms were simultaneously active in both starting materials at all the tested deformation conditions, resulting in significant grain refinement. Cast and extruded samples showed the development of a similar microstructure, texture, and flow stress by a strain of 1, despite having very different starting microstructures. This was investigated by considering differences in DRX mechanisms and kinetics, and relative deformation mode activities. Since industrial forgings typically involve strains much higher than 1, comparable final microstructure and texture are expected in industrial-scale forgings of AZ80 at 400 °C, irrespective of the starting material state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study. Specific data will be made available on request.

References

  1. Z.B. Sajuri, Y. Miyashita, Y. Hosokai, and Y. Mutoh, Effects of Mn Content and Texture on Fatigue Properties of As-Cast and Extruded AZ61 Magnesium Alloys, Int. J. Mech. Sci., 2006, 48(2), p 198–209.

    Article  Google Scholar 

  2. S.M.H. Karparvarfard, S.K. Shaha, S.B. Behravesh, H. Jahed , and B.W. Williams, Fatigue Characteristics and Modeling of Cast and Cast-Forged ZK60 Magnesium Alloy, Int. J. Fatigue, 2019, 118, p 282–297.

    Article  CAS  Google Scholar 

  3. J. Hirsch and T. Al-Samman, Superior Light Metals by Texture Engineering: Optimized Aluminum and Magnesium Alloys for Automotive Applications, Acta Materialia, 2013, 61(3), p 818–843.

    Article  CAS  Google Scholar 

  4. A. Chapuis and J.H. Driver, Temperature Dependency of Slip and Twinning in Plane Strain Compressed Magnesium Single Crystals, Acta Materialia, 2011, 59(5), p 1986–1994.

    Article  CAS  Google Scholar 

  5. T. Al-Samman and G. Gottstein, Dynamic Recrystallization During High Temperature Deformation of Magnesium, Mater. Sci. Eng. A, 2008, 490(1–2), p 411–420.

    Article  Google Scholar 

  6. P. Changizian, A. Zarei-Hanzaki , and H. Abedi, On the Recrystallization Behavior of Homogenized AZ81 Magnesium Alloy: The Effect of Mechanical Twins and γ Precipitates, Mater. Sci. Eng. A, 2012, 558, p 44–51.

    Article  CAS  Google Scholar 

  7. F. Pilehva, A. Zarei-Hanzaki , and S.M. Fatemi-Varzaneh, The Influence of Initial Microstructure and Temperature on the Deformation Behavior of AZ91 Magnesium Alloy, Mater. Design, 2012, 42, p 411–417.

    Article  CAS  Google Scholar 

  8. S.W. Xu, S. Kamado, N. Matsumoto, T. Honma , and Y. Kojima, Recrystallization Mechanism of As-Cast AZ91 Magnesium Alloy During Hot Compressive Deformation, Mater. Sci. Eng. A, 2009, 527(1–2), p 52–60.

    Article  Google Scholar 

  9. X. Yang, H. Miura , and T. Sakai, Dynamic Evolution of New Grains in Magnesium Alloy AZ31 during Hot Deformation, Mater. Trans., 2003, 44(1), p 197–203.

    Article  CAS  Google Scholar 

  10. A. Galiyev, R. Kaibyshev , and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Materialia, 2001, 49(7), p 1199–1207.

    Article  CAS  Google Scholar 

  11. A.G. Beer and M.R. Barnett, Microstructural Development during Hot Working of Mg-3Al-1Zn, Metal. Mater. Trans. A, 2007, 38, p 1856–1867.

    Article  Google Scholar 

  12. T. Kodippili, S. Lambert , and A. Arami, Data-Driven Prediction of Forging Outcome: Effect of Preform Shape on Plastic Strain in a Magnesium Alloy Forging, Mater. Today Commun., 2022, 31, p 103210.

    Article  CAS  Google Scholar 

  13. A. Gryguc, S.B. Behravesh, S.K. Shaha, H. Jahed, M. Wells, B. Williams , and X. Su, Low-Cycle Fatigue Characterization and Texture Induced Ratcheting Behaviour of Forged AZ80 Mg Alloys, Int. J. Fatigue, 2018, 116, p 429–438.

    Article  CAS  Google Scholar 

  14. A. Gryguć, S. Behravesh, H. Jahed, M. Wells, B. Williams, R. Gruber, A. Duquette, T. Sparrow, J. Prsa , and X. Su, A Method for Comparing the Fatigue Performance of Forged AZ80 Magnesium, Metals, 2021, 11(8), p 1–16.

    Article  Google Scholar 

  15. D. Toscano, S. K. Shaha, B. Behravesh, H. Jahed, M. Wells, B. Williams , and J. McKinley, "Effect of Forging on Microstructure, Texture and Compression Behavior of Extruded AZ31B," Proceedings of the 3rd Pan American Materials Congress, pp. 347-354, 2017.

  16. D. Toscano, S.K. Shaha, B. Behravesh, H. Jahed , and B. Williams, Effect of Forging on Microstructure, Texture, and Uniaxial Properties of Cast AZ31B Alloy, J. Mater. Eng. Performance, 2017, 26, p 3090–3103.

    Article  CAS  Google Scholar 

  17. M. Graf, M. Ullmann , and R. Kawalla, Influence of Initial State on Forgeability and Microstructure Development of Magnesium Alloys, Procedia Eng., 2014, 81, p 546–551.

    Article  CAS  Google Scholar 

  18. Y. Liu, J. Zhou, D. Zhang, T. Lin, Y. Liu, C. Tian , and Y. Yang, Influence of Initial Microstructure on the Hot Working Flow Stress of Mg-3Al-1Zn Alloy, Materials Science Forum, 2017, 898, p 86–90.

    Article  Google Scholar 

  19. A. Beer and M. Barnett, Influence of Initial Microstructure on the Hot Working Flow Stress of Mg–3Al–1Zn, Mater. Sci. Eng. A, 2006, 423(1–2), p 292–299.

    Article  Google Scholar 

  20. B. Wang, R. Xin, G. Huang, X. Chen , and Q. Liu, Hot-Deformation Behaviors of AZ31 Alloys with Different Initial States, Trans. Nonferrous Metals Soc. China, 2008, 18(1), p s145–s149.

    Article  CAS  Google Scholar 

  21. X. Huang, K. Suzuki, Y. Chino , and M. Mabuchi, Influence of Aluminum Content on the Texture and Sheet Formability of AM Series Magnesium Alloys, Mater. Sci. Eng. A, 2015, 633, p 144–153.

    Article  CAS  Google Scholar 

  22. F. Guo, D. Zhang, H. Wu, L. Jiang , and F. Pan, The Role of Al Content on Deformation Behavior and Related Texture Evolution During Hot Rolling of Mg-Al-Zn Alloys, J. Alloys Compounds, 2017, 695, p 396–403.

    Article  CAS  Google Scholar 

  23. Q. Wang, Y. Chen, M. Liu, J. Lin , and H.J. Roven, Microstructure Evolution of AZ Series Magnesium Alloys During Cyclic Extrusion Compression, Mater. Sci. Eng. A, 2010, 527(9), p 2265–2273.

    Article  Google Scholar 

  24. F. Zarandi, G. Seale, R. Verma, E. Essadiqi , and S. Yue, Effect of Al and Mn Additions on Rolling and Deformation Behavior of AZ Series Magnesium Alloys, Mater. Sci. Eng. A, 2008, 496(1–2), p 159–168.

    Article  Google Scholar 

  25. P. Prakash, M.A. Wells , and B.W. Williams, Hot Deformation of Cast AZ31 and AZ80 Magnesium Alloys – Influence of Al Content on Microstructure and Texture Development, J. Alloys Compounds, 2022, 897, p 162876.

    Article  CAS  Google Scholar 

  26. P. Prakash, D. Toscano, S.K. Shaha, M.A. Wells, H. Jahed , and B.W. Williams, Effect of Temperature on the Hot Deformation Behavior of AZ80 Magnesium Alloy, Mater. Sci. Eng. A, 2020, 794, p 139923.

    Article  CAS  Google Scholar 

  27. R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152(2), p 136–143.

    Article  CAS  Google Scholar 

  28. R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, 1998.

  29. P. Prakash, Microstructure and texture evolution during hot deformation of AZ80 magnesium alloy, University of Waterloo, Waterloo, 2019.

    Google Scholar 

  30. O. Sitdikov, R. Kaibyshev , and T. Sakai, "Dynamic Recrystallization Based on Twinning in Coarse-Grained Mg," 2003.

  31. A.M. Wusatowska-Sarnek, H. Miura , and T. Sakai, Nucleation and Microtexture Development Under Dynamic Recrystallization of Copper, Mater. Sci. Eng. A, 2002, 323(1–2), p 177–186.

    Article  Google Scholar 

  32. M.R. Barnett, Z. Kehsavarz, A.G. Beer , and D. Atwell, Influence of Grain Size on the Compressive Deformation of Wrought Mg–3Al–1Zn, Acta Materialia, 2004, 52(17), p 5093–5103.

    Article  CAS  Google Scholar 

  33. D. Qin, M. Wang, C. Sun, Z. Su, L. Qian , and Z. Sun, Interaction Between Texture Evolution and Dynamic Recrystallization of Extruded AZ80 Magnesium Alloy during Hot Deformation, Mater. Sci. Eng. A, 2020, 788, p 139537.

    Article  CAS  Google Scholar 

  34. Y. Huang, G. Zeng, L. Huang, Z. Zheng, C. Liu , and H. Zhan, Influence of Strain Rate on Dynamic Recrystallization Behavior and Hot Formability of Basal-Textured AZ80 Magnesium Alloy, Mater. Character., 2022, 187, p 111880.

    Article  CAS  Google Scholar 

  35. A. Hadadzadeh, F. Mokdad, M.A. Wells , and D.L. Chen, A New Grain Orientation Spread Approach to Analyze the Dynamic Recrystallization Behavior of a Cast-Homogenized Mg-Zn-Zr Alloy, Mater. Sci. Eng. A, 2018, 709, p 285–289.

    Article  CAS  Google Scholar 

  36. J.P. Sah, G.J. Richardson and C.M. Sellars, Grain-Size Effects during Dynamic Recrystallization of Nickel, Metal Sci., 1974, 8(1), p 325–331.

    Article  CAS  Google Scholar 

  37. S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki , and H. Beladi, Dynamic Recrystallization in AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2007, 456(1–2), p 52–57.

    Article  Google Scholar 

  38. C.M. Sellars, Recrystallization of Metals, Metals Forum, 1981, 4, p 75–80.

    CAS  Google Scholar 

  39. M.R. Barnett, A.G. Beer, D. Atwell , and A. Oudin, Influence of Grain Size on Hot Working Stresses and Microstructures in Mg–3Al–1Zn, Scripta Materialia, 2004, 51(1), p 19–24.

    Article  CAS  Google Scholar 

  40. H. Watanabe, H. Tsutsui, T. Mukai, K. Ishikawa, Y. Okanda, M. Kohzu , and K. Higashi, Grain Size Control of Commercial Wrought Mg-Al-Zn Alloys Utilizing Dynamic Recrystallization, Mater. Trans., 2001, 42(7), p 1200–1205.

    Article  CAS  Google Scholar 

  41. S.R. Agnew, M.H. Yoo , and C.N. Tomé, Application of Texture Simulation to Understanding Mechanical Behavior of Mg and Solid Solution Alloys Containing Li or Y, Acta Materialia, 2001, 49(20), p 4277–4289.

    Article  CAS  Google Scholar 

  42. P. Backx and L. Kestens, Dynamic Recrystallization during Compression of Mg-3%Al-1%Zn, Mater. Sci. Forum, 2005, 495–497, p 633–638.

    Article  Google Scholar 

  43. T. Al-Samman, X. Li , and S.G. Chowdhury, Orientation Dependent Slip and Twinning During Compression and Tension of Strongly Textured Magnesium AZ31 alloy, Mater. Sci. Eng. A, 2010, 527(15), p 3450–3463.

    Article  Google Scholar 

  44. E.I. Poliak , and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Materialia, 1996, 44(1), p 127–136.

    Article  CAS  Google Scholar 

  45. J. Wang, J. Chen, Z. Zhao , and X.-Y. Ruan, Dynamic Recrystallization Behavior of Microalloyed Forged Steel, J. Iron and Steel Res. Int., 2008, 15(3), p 78–81.

    Article  CAS  Google Scholar 

  46. M.R. Barnett, Hot Working Microstructure Map for Magnesium AZ31, Mater. Sci. Forum, 2003, 426–432, p 515–520.

    Article  Google Scholar 

  47. J.J. Jonas, X. Quelennec, L. Jiang , and É. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Materialia, 2009, 57(9), p 2748–2756.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC), Automotive Partnership Canada (APC) program under APCPJ 459269—13 Grant with contributions from Multimatic Technical Centre, Ford Motor Company, and Centerline Windsor. The authors would like to thank Mr. Mark Whitney and Dr. Massimo Di Ciano of UW for help in carrying uniaxial compression tests; Prof. Hamid Jahed and Dr. Sugrib Shaha of UW for help in acquiring XRD texture data; and Ms. Renata Zavadil of CanmetMATERIALS for help in EBSD data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary A. Wells.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Magnesium. The issue was organized by Prof. C. (Ravi) Ravindran, Dr. Raja Roy, Mr. Payam Emadi, and Mr. Bernoulli Andilab, Ryerson University.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, P., Uramowski, J., Wells, M.A. et al. Influence of Initial Microstructure on the Hot Deformation Behavior of AZ80 Magnesium Alloy. J. of Materi Eng and Perform 32, 2647–2660 (2023). https://doi.org/10.1007/s11665-022-07151-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07151-2

Keywords

Navigation