Skip to main content
Log in

Size Effect Stemming from Specimen Geometry on Mechanical Properties of an Aluminum Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this effort, variation of mechanical properties with the geometry of Al6061 specimens was studied, while the grain size was unchanged. Young's modulus, yield strength, ultimate tensile strength, and fracture strain of dog–bone specimens with cross sections varying from 0.4 mm × 0.4 mm to 12.7 mm × 7 mm were measured from uniaxial tension tests. Four sets of specimens were used, corresponding to varying: cross-sectional area; thickness; aspect ratio; and gauge length. Digital image correlation of natural speckles on the small specimens was used to measure full-field strains, in order to avoid the effect of additional devices or paint on the measured mechanical properties. Changes in microstructures were observed through metallography. A decrease in Young’s modulus, yield strength, ultimate tensile strength, and fracture strain was observed when the cross-sectional area, thickness, and aspect ratio were reduced while the opposite trend was seen in the reduction of the gauge length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Code Availability

Not Applicable.

References

  1. R.Z. Valiev, VYu. Gertsman, and O.A. Kaibyshev, The Role of Non-Equilibrium Grain Boundary Structure in Strain Induced Grain Boundary Migration (Recrystallization after small strain), Scr. Metall., 1983, 17, p 853–856. https://doi.org/10.1016/0036-9748(83)90248-X

    Article  CAS  Google Scholar 

  2. H. Mizubayashi, Y. Yoshihara, and S. Okuda, The Elasticity Measurements of Aluminiumnm-Films, Physica Status Solidi (a), 1992, 129, p 475–481. https://doi.org/10.1002/pssa.2211290217

    Article  CAS  Google Scholar 

  3. ASTM B577, Standard Test Methods for Tension Testing Wrought and Cast Aluminum and Magnesium-Alloy Products.

  4. P.S. Ghangrekar, R. Banjare, C.R. Balkrishna, and H. Murthy, Tensile Testing of Al6061-T6 Microspecimens with Ultrafine-Grained Structure Derived from Machining-Based SPD Process, J. Mater. Res., 2014, 29(11), p 1278–1287. https://doi.org/10.1557/jmr.2014.115

    Article  CAS  Google Scholar 

  5. A.V. Sergueeva, J. Zhou, B.E. Meacham, and D.J. Branagan, Gage Length and Sample Size Effect on Measured Properties During Tensile Testing, Mater. Sci. Eng. A, 2009, 526, p 79–83. https://doi.org/10.1016/j.msea.2009.07.046

    Article  CAS  Google Scholar 

  6. W.J. Yuan, Z.L. Zhang, Y.J. Su, L.J. Qiaoa, and W.Y. Chu, Influence of Specimen Thickness with Rectangular Cross-section On the Tensile Properties of Structural Steels, Mater. Sci. Eng. A, 2012, 532, p 601–605. https://doi.org/10.1016/j.msea.2011.11.021

    Article  CAS  Google Scholar 

  7. G. Simons, C. Weippert, and J. D., Villain J., Size effects in Tensile Testing of Thin Cold Rolled and Annealed Cu Foils, Mater. Sci. Eng. A, 2006, 416, p 290–299. https://doi.org/10.1016/j.msea.2005.10.060

    Article  CAS  Google Scholar 

  8. C.H. Suh, Y.C. Jung, and S.K. Young, Effects of Thickness and Surface Roughness on Mechanical Properties of Aluminum Sheets, J. Mech. Sci. Technol., 2010, 24(10), p 2091–2098. https://doi.org/10.1007/s12206-010-0707-7

    Article  Google Scholar 

  9. S. Venkatachalam, R. Banjare, H. Murthy, and B.C. Rao, Mechanical Testing of Micro-specimens of Al6061-T6 Using DIC for Strain Measurement, Exp. Tech., 2019, 43, p 125–135. https://doi.org/10.1007/s40799-018-0254-1

    Article  Google Scholar 

  10. Z. Dong, Z. Xiaoyu, S. Wenhua, Z. Hao, L. Hongshuai, and L. Jun, Study of Size Effect on Microstructure and Mechanical Properties of AlSi10Mg Samples Made by Selective Laser Melting, Materials, 2018, 11, p 2463. https://doi.org/10.3390/ma11122463

    Article  CAS  Google Scholar 

  11. M. Xu, Z. Xu, Z. Zhang, H. Lei, Y. Bai, and D. Fang, Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies, Int. J. Mech. Sci., 2019, 159, p 43–57. https://doi.org/10.1016/j.ijmecsci.2019.05.044

    Article  Google Scholar 

  12. X. Chen, Y. Li, X. Han, and J. Zhang, Size Effect Studies on Tensile Tests for Hot Stamping Steel, J. Mater. Eng. Perform., 2018, 27, p 640–647. https://doi.org/10.1007/s11665-018-3135-y

    Article  CAS  Google Scholar 

  13. Y. Chen, O. Kraft, and M. Walter, Size effects in thin coarse-grained gold microwires under tensile and torsional loading, Acta Mater., 2015, 87, p 78–85. https://doi.org/10.1016/j.actamat.2014.12.034

    Article  CAS  Google Scholar 

  14. W. Weibull, A Statistical Distribution Function of Wide Applicability, J. Appl. Mech., 1951, 18, p 290–293.

    Article  Google Scholar 

  15. J.J. Ortega, G. Ruiz, E. Poveda, D.C. González, M. Tarifa, X.X. Zhang, R.C. Yu, M.Á. Vicente, Á. de la Rosa, and L. Garijo, Size Effect on the Compressive Fatigue of Fibre-Reinforced Concrete, Constr. Build. Mater., 2022, 322, p 126238. https://doi.org/10.1016/j.conbuildmat.2021.126238

    Article  Google Scholar 

  16. Z.P. BazÏant, Size Effect, Int. J. Solids Struct., 2000, 37, p 69–80. https://doi.org/10.1016/S0020-7683(99)00077-3

    Article  Google Scholar 

  17. M.I. Idiart, V.S. Deshpande, N.A. Fleck, and J.R. Willis, Size Effects in the Bending of Thin Foils, Int. J. Eng. Sci., 2009, 47(11–12), p 1251–1264. https://doi.org/10.1016/j.ijengsci.2009.06.002

    Article  CAS  Google Scholar 

  18. T. Hoshide and H. Sugiyama, Numerical Analysis of Sample-Size Effect on Strength of Alumina, J. Mater. Eng. Perform., 2013, 22, p 1–8. https://doi.org/10.1007/s11665-012-0214-3

    Article  CAS  Google Scholar 

  19. B. Ehrler, X.D. Hou, T.T.K.M. ZhuP’ng, C.J. Walker, A.J. Bushby, and D.J. Dunstan, Grain Size and Sample Size Interact to Determine Strength in a Soft Metal, Philos. Mag., 2008, 88(25), p 3043–3050. https://doi.org/10.1080/14786430802392548

    Article  CAS  Google Scholar 

  20. D.S. Balint, V.S. Deshpande, A. Needleman, and E. Van der Giessen, Discrete Dislocation Plasticity Analysis of the Grain Size Dependence of the Flow Strength of Polycrystals, Int. J. Plast., 2008, 24, p 2149–2172. https://doi.org/10.1016/j.ijplas.2007.08.005

    Article  CAS  Google Scholar 

  21. J.H. Choi, H. Kim, J.Y. Kim, K.H. Lim, B.C. Lee, and G.D. Sim, Micro-Cantilever Bending Tests for Understanding Size Effect in Gradient Elasticity, Mater. Des., 2022, 214, p 110398. https://doi.org/10.1016/j.matdes.2022.110398

    Article  CAS  Google Scholar 

  22. O. Altun, O. Sahin, and A. Toprak, Effects of Impact and Attrition Mechanisms on Size Distribution and Liberation Characteristics of the Components, Adv. Powder Technol., 2021, 32(10), p 3550–3563. https://doi.org/10.1016/j.apt.2021.08.010

    Article  Google Scholar 

  23. H. Yang, G. Xiaogang, H. Wang, Q. Jia, M. Yunlong, H. Lei, and H. Chen, Low-Velocity Impact Performance of Composite-Aluminum Tubes Prepared by Mesoscopic Hybridization, Compos. Struct., 2021, 274, p 114348. https://doi.org/10.1016/j.compstruct.2021.114348

    Article  CAS  Google Scholar 

  24. P. Valat-Villain, J. Durinck, and P.O. Renault, Grain Size Dependence of Elastic Moduli in Nanocrystalline Tungsten, J. Nanomater., 2017 https://doi.org/10.1155/2017/3620910

    Article  Google Scholar 

  25. V. Krstic, U. Erb, and G. Palumbo, Effect of Porosity on Young’s Modulus of Nanocrystalline Materials, Scripta Mater., 1993, 29(11), p 1501–1504. https://doi.org/10.1016/0956-716X(93)90344-R

    Article  CAS  Google Scholar 

  26. P.G. Sanders, J.A. Eastman, and J.R. Weertman, Elastic and Tensile Behavior of Nanocrystalline Copper and Palladium, Acta mater., 1997, 45(10), p 4019–4025. https://doi.org/10.1016/S1359-6454(97)00092-X

    Article  CAS  Google Scholar 

  27. G.E. Fougere, L. Riester, M. Ferber, J.R. Weertman, and R.W. Siegel, Young’s Modulus of Nanocrystalline Fe Measured by Nanoindentation, Mater. Sci. Eng. A, 1995, 204, p 1–6. https://doi.org/10.1016/0921-5093(95)09927-1

    Article  Google Scholar 

  28. T.D. Shen, C.C. Koch, T.Y. Tsui, and G.M. Pharr, On the Elastic Moduli of Nanocrystalline Fe, Cu, Ni, and Cu-Ni Alloys Prepared by Mechanical Milling/Alloying, J. Mater. Res., 1995, 10, p 2892–2896. https://doi.org/10.1557/JMR.1995.2892

    Article  CAS  Google Scholar 

  29. H.F. Akbary, M.J. Santofimia, and J. Sietsma, Elastic Strain Measurement of Miniature Tensile Specimens, J. Exp. Mech., 2014, 54, p 165–173. https://doi.org/10.1007/s11340-013-9785-7

    Article  Google Scholar 

  30. A. Vinogradov, D. Orlov, A. Danyuk, and Y. Estrin, Effect of Grain Size on the Mechanisms of Plastic Deformation in Wrought Mg-Zn-Zr Alloy Revealed by Acoustic Emission Measurements, Acta Mater., 2013, 61, p 2044–2056. https://doi.org/10.1016/j.actamat.2012.12.024

    Article  CAS  Google Scholar 

  31. Y.H. Zhao, Y.Z. Guo, Q. Wei, T.D. Topping, A.M. Dangelewicz, Y.T. Zhu, T.G. Langdon, and E.J. Lavernia, Influence of Specimen Dimensions and Strain Measurement Methods on Tensile Stress-Strain cuRves, Mater. Sci. Eng. A, 2009, 525, p 68–77. https://doi.org/10.1016/j.msea.2009.06.031

    Article  CAS  Google Scholar 

  32. Y. Kohno, A. Kohyama, L.H. Margaret, H. Takanori, and F.A.G. YutaiKatoh, Specimen Size Effects on the Tensile Properties of JPCA and JFMS, J. Nuclear Mater., 2000, 283–287, p 1014–1017. https://doi.org/10.1016/S0022-3115(00)00245-2

    Article  Google Scholar 

  33. L.V. Raulea, A.M. Goijaerts, L.E. Govaert, and F.P.T. Baaijens, Size Effect in the Processing of Thin Metal Sheets, J. Mater. Process. Technol., 2001, 115, p 44–48. https://doi.org/10.1016/S0924-0136(01)00770-1

    Article  CAS  Google Scholar 

  34. W.L. Chan and M.W. Fu, Experimental and Simulation Based Study on Micro-Scaled Sheet Metal Deformation Behavior in Microembossing Process, Mater. Sci. Eng. A, 2012, 556, p 60–67. https://doi.org/10.1016/j.msea.2012.06.058

    Article  CAS  Google Scholar 

  35. L. Zhang, W. Zhang, W. Chen, J. Duan, W. Wang, and E. Wang, The Effect of Grain Size on the Strain Hardening Behavior for Extruded ZK61 Magnesium Alloy, J. Mater. Eng. Perform., 2017, 26, p 6013–6021. https://doi.org/10.1007/s11665-017-3023-x

    Article  CAS  Google Scholar 

  36. R.K. Mahidhara, Effect of Grain Size on the Superplastic Behavior of a 7475 Aluminum Alloy, J. Mater. Eng. Perform., 1995, 4, p 674–678.

    Article  Google Scholar 

  37. Y.C. Huang, S.Y. Chang, and C.H. Chang, Effect of Residual Stress on Mechanical Properties and Interface adhesion Strength of SiN thin Films, Thin Solid Films, 2009, 517, p 4857–4861. https://doi.org/10.1016/j.tsf.2009.03.043

    Article  CAS  Google Scholar 

  38. L. Zhu, B. Xu, H. Wang, and C. Wang, On the Evaluation of Residual Stress and Mechanical Properties of FeCrBSi Coatings by Nanoindentation, Mater. Sci. Eng. A, 2012, 536, p 98–102. https://doi.org/10.1016/j.msea.2011.12.078

    Article  CAS  Google Scholar 

  39. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, England, 1985.

    Google Scholar 

  40. Z.J. Li, G. Winther, and N. Hansen, Anisotropy of Plastic Deformation in Rolled Aluminum, Mater. Sci. Eng. A, 2004, 387–389, p 199–202. https://doi.org/10.1016/j.msea.2004.03.090

    Article  CAS  Google Scholar 

  41. S. Suwas and R.K. Ray, Crystallographic Texture of Materials, Springer, Heidelberg, 2014.

    Book  Google Scholar 

  42. A. Molotnikov, R. Lapovok, C.H.J. Davies, W. Caoa, and Y. Estrin, Size Effect on The Tensile Strength of Fine-Grained Copper, Scripta Mater., 2008, 59, p 1182–1185. https://doi.org/10.1016/j.scriptamat.2008.08.004

    Article  CAS  Google Scholar 

  43. S. Nohut, Influence of Sample Size on Strength Distribution of Advanced Ceramics, Ceram. Int., 2014, 40, p 4285–4295. https://doi.org/10.1016/j.ceramint.2013.08.093

    Article  CAS  Google Scholar 

  44. T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle, Contribution to Size Effect of Yield Strength from the Stochastics of Dislocation Source Lengths in Finite Samples, Scripta Mater., 2007, 56, p 313–316. https://doi.org/10.1016/j.scriptamat.2006.09.016

    Article  CAS  Google Scholar 

Download references

Funding

No funds, grants, or other support were received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vagish D. Mishra.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, V.D., Venkatachalam, S., Rao, B.C. et al. Size Effect Stemming from Specimen Geometry on Mechanical Properties of an Aluminum Alloy. J. of Materi Eng and Perform 32, 562–576 (2023). https://doi.org/10.1007/s11665-022-07142-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07142-3

Keywords

Navigation