Skip to main content
Log in

Microstructures and Corrosion Behavior of AZ61 Magnesium Alloy Prepared by Extrusion–Shear with Different Die Channel Angles

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A new severe plastic deformation process named extrusion–shear (ES) was developed, which combines ordinary direction extrusion and equal channel angular extrusion to realize the interaction of extrusion and shear. Different die channel angles have been designed and manufactured. Microstructures of samples obtained from ES-formed tubes were observed. DEFORMTM-3D finite element software was used to simulate the ES process. The corrosion resistances of the fabricated AZ61 Mg alloy samples were investigated by immersion and electrochemical testing. The effects of die channel angles on the corrosion resistance of AZ61 magnesium alloy fabricated by the ES process were studied. Compared with the ES process with a die channel angle of 135°, the ES process with a die channel angle of 120° can induce higher effective strain in the shear deformation zone, and the magnesium alloy prepared with smaller die channel angle has larger electrochemical impedance arc radius, indicating that its impedance is larger. The research results show that samples produced with smaller die channel angles have better corrosion resistances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11.

Similar content being viewed by others

References

  1. H.J. Hu, S.L. Gan, Y. Tian, D.F. Zhang, J.K. Feng and Z.W. Ou, Evaluation of chilled casting and extrusion-shear forming technology based on numerical simulation and experiments, Mater. Test., 2021, 63(8), p 728–735. https://doi.org/10.1515/mt-2021-0002

    Article  CAS  Google Scholar 

  2. U. Elaiyarasan, V. Satheeshkumar and C. Senthilkumar, Surface modification of a magnesium alloy by electrical discharge coating with a powder metallurgy electrode, Mater. Test., 2021, 63(4), p 360–367. https://doi.org/10.1515/mt-2020-0054

    Article  CAS  Google Scholar 

  3. B. Akyüz, Wear and machinability of AM series magnesium alloys, Mater. Test., 2019, 61(1), p 49–55. https://doi.org/10.3139/120.111285

    Article  CAS  Google Scholar 

  4. Q. Chen, G. Chen, L.N. Han, N. Hu, F. Han, Z.D. Zhao, X.S. Xia and Y.Y. Wan, Microstructure evolution of sicp/ZM6 (Mg-Nd-Zn) magnesium matrix composite in the semi-solid state, J. Alloy. Compd., 2015, 656, p 67–76. https://doi.org/10.1016/j.jallcom.2015.09.135

    Article  CAS  Google Scholar 

  5. L.X. Sun, N.N. Dong, Nd A, J.A. Wang, H.B. Ma, P.P. Jin, and Y. Peng, Effect of solid solution Zn atoms on corrosion behaviors of Mg-2Nd-2Zn alloys, ScienceDirect. 2021.

  6. P.Y. Zhao, T. Ying, F.Y. Cao, X.Q. Zeng, and W.J. Ding, Designing strategy for corrosion-resistant Mg alloys based on film-free and film-covered models. 2021.

  7. Y.P. Zhang, Y.D. Huang, F. Feyerabend, C. Blawert, W.M. Gan, E. Maawad, S. You, S. Gavras, N. Scharnagl and N. Hort, Influence of the amount of intermetallic on the degradation of Mg-Nd alloys under physiological conditions, Acta Biomater., 2020, 121, p 30704.

    Google Scholar 

  8. A. Atrens, Z. Shi, S.U. Mehreen, S. Johnston, G.L. Song, X. Chen and F. Pan, Review of Mg alloy corrosion rates, J. Magn. Alloys, 2020, 04, p 989–998.

    Article  Google Scholar 

  9. A. Mz, B. Lgh, G.C. Yang et al., First-principles search for alloying elements that increase corrosion resistance of Mg with second-phase particles of transition metal impurities, Comput. Mater. Sci., 2019, 165, p 154–166.

    Article  Google Scholar 

  10. J. Liu, L.X. Yang, C.Y. Zhang, B. Zhang, T. Tao, Y. Yang, K.M. Wu and F.H. Wang, Role of the LPSO structure in the improvement of corrosion resistance of Mg-Gd-Zn-Zr alloys ScienceDirect, J. Alloy. Compd., 2019, 782, p 648–658.

    Article  CAS  Google Scholar 

  11. C. Hao, J.W. Tang, W.W. Gong, Y.P. Gao, F. Tian and L. Chen, Effects of annealing treatment on the microstructure and corrosion behavior of hot rolled AZ31 Mg alloy, J. Mater. Res. Technol., 2021, 15, p 4800–4812.

    Article  Google Scholar 

  12. C.C. Liu, H. Zheng, X. Gu, B.L. Jiang and J. Liang, Effect of severe shot peening on corrosion behavior of AZ31 and AZ91 magnesium alloys[J], J. Alloy. Compd., 2019, 770, p 500–506.

    Article  CAS  Google Scholar 

  13. A.H. Liu and J.L. XuU, Preparation and corrosion resistance of superhydrophobic coatings on AZ31 magnesium alloy, Trans. Nonferr. Metals Soc. China, 2018, 28(11), p 2287–2293.

    Article  CAS  Google Scholar 

  14. S. Alireza, H. Ehsan, B. Ahmad, S.S. Kwang, Corrosion behaviour of AZ31 magnesium alloy containing various levels of strontium. Corros. Sci., 141 (2018).

  15. Q. Chen, B.G. Yuan, J. Lin, X.S. Xia, Z.D. Zhao and D.Y. Shu, Comparisons of microstructure, thixoformability and mechanical properties of high performance wrought magnesium alloys reheated from the as-cast and extruded states, J. Alloy. Compd., 2014, 584(2), p 63–75. https://doi.org/10.1016/j.jallcom.2013.08.218

    Article  CAS  Google Scholar 

  16. J. Liu, H. Hu, Y. Liu, D. Zhang, Z. Ou and Y. Zhi, Mechanical properties and wear-corrosion resistance of a new compound extrusion process for magnesium alloy AZ61, Mater. Test., 2020, 62(4), p 395–399. https://doi.org/10.3139/120.111476

    Article  CAS  Google Scholar 

  17. Q. Chen, D.Y. Shu, J. Lin, Y. Wu, X.S. Xia, S.H. Huang et al., Evolution of microstructure and texture in copper during repetitive extrusion-upsetting and subsequent annealing, J. Mater. Sci. Technol., 2017, 33, p 690–697. https://doi.org/10.1016/j.jmst.2017.03.003

    Article  CAS  Google Scholar 

  18. H. Hu,X. Hong, Y. Tian et al. AZ31 magnesium alloy tube manufactured by composite forming technology including extruded-shear and bending based on finite element numerical simulation and experiments, 115(5), 2395–2402, https://doi.org/10.1007/s00170-021-07242-9 (2021)

  19. N.M. Krywopusk, L.J. Kecskes and T.P. Weihs, Microstructural characterization of pure Mg and AZ31B processed by ECAE, Mater. Charact., 2019, 158, 109950.

    Article  CAS  Google Scholar 

  20. D.F. Zhan, H.J. Hu, F.S. Pan, M.B. Yang and J.P. Zhang, Numerical and physical simulation of new SPD method combining extrusion and equal channel angular pressing for AZ31 magnesium alloy, Trans. Nonferr. Metals Soc. China, 2010, 20(03), p 478–483.

    Article  Google Scholar 

  21. J. Stráská, M. Janeček, J. Čížek, J. Stráský, B. Hadzima, Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP). Mater. Charact., 94 (2014).

  22. R.G. Li, H.R. Li, D.Y. Zhao, Y.Q. Dai, D.Q. Fang, J.H. Zhang, L. Zong, J. Sun, High strength commercial AZ91D alloy with a uniformly fine-grained structure processed by conventional extrusion. Mater. Sci. Eng. A, 2020, 780(prepublish).

  23. T. Han, G. Huang, Q. Deng, G. Wang, B. Jiang, A. Tang, Y. Zhu, F. Pan, Grain refining and mechanical properties of AZ31 alloy processed by accumulated extrusion bonding. J. Alloys Comp., 745 (2018).

  24. A. Önder, Effect of die parameters on the grain size, mechanical properties and fracture mechanism of extruded AZ31 magnesium alloys. Mater. Sci. Eng. A., 2020,.793 (prepublish)

  25. Q.H. Wang, J.F. Song, B. Jiang, A.T. Tang, Y.F. Chai, T.H. Yang, G.S. Huang, F.S. Pan, An investigation on microstructure, texture and formability of AZ31 sheet processed by asymmetric porthole die extrusion. Mater. Sci. Eng. A, 720 (2018)

  26. B.N. Wang, W.A. Feng, W.A. Zhi, L.I. Zheng and P.L. Mao, Fabrication of fine-grained, high strength and toughness Mg alloy by extrusionshearing process, Trans. Nonferrous Metals Soc. China, 2021, 31(3), p 666–678.

    Article  CAS  Google Scholar 

  27. B.N. Wang, F. Wang, Z. Wang, Z. Liu and P.L. Mao, Fabrication of fine-grained, high strength and toughness Mg alloy by extrusionshearing process, Trans. Nonferrous Metals Soc. China, 2021, 31(3), p 666–678.

    Article  CAS  Google Scholar 

  28. A. Rezaei, R. Mahmudi, C. Cayron and R. Loge, Microstructural evolution and superplastic behavior of a fine-grained MgGdYAg alloy processed by simple shear extrusion, Mater. Sci. Eng. A, 2021, 806, 140803.

    Article  CAS  Google Scholar 

  29. B. Gassama and M.Ö. Öteyaka, Influence of cryogenic treatment on the corrosion of AZ91 and AM60 magnesium alloys in an isotonic solution, Mater. Test., 2019, 61(11), p 1039–1044. https://doi.org/10.3139/120.111420

    Article  CAS  Google Scholar 

  30. Y. Tian, H. Hu, P. Liang et al. Influences of expanding angles on extrusion-shearing-expanding processing of AZ31 magnesium alloy thin-walled tubes, https://doi.org/10.1007/s00170-021-07898-3 (2021)

  31. H. Hu, Y. Ying and D. Zhang, Relationship between extrusion temperature and corrosion resistance of magnesium alloy AZ61, Mater. Test., 2018, 60(3), p 325–332. https://doi.org/10.3139/120.111155

    Article  CAS  Google Scholar 

  32. L. Xiaoye, L. Liwei, S. Kun, Microstructure and texture evolution during the direct extrusion and bending–shear deformation of AZ31 magnesium alloy. Acta Metallurgica Sinica (English Letters), 32(6), 710-718, CNKI:SUN:JSXY.0.2019-06-005 (2019)

  33. A. Stefanik, P. Szota, S. Mroz and H. Dyja, Application of the three-high skew rolling to magnesium rods production, Mater. Test., 2016, 58(5), p 438–441. https://doi.org/10.3139/120.110876

    Article  Google Scholar 

  34. S.M. Baek, H.J. Kim, H.Y. Jeong et al., Effect of alloyed Ca on the microstructure and corrosion properties of extruded AZ61 Mg alloy, Corros. Sci., 2016, 112, p 44–53. https://doi.org/10.1016/j.corsci.2016.07.011

    Article  CAS  Google Scholar 

  35. H. Liao, M. Zeng and H. Chen, Impression creep behavior of magnesium alloy ZK60, Mater. Test., 2018, 60(1), p 68–72. https://doi.org/10.3139/120.111119

    Article  CAS  Google Scholar 

  36. D. Regener, E. Schick, G. Dietze and H. Heyse, Mechanische Eigenschaften der Magnesium-Legierung AZ91: Kennwertermittlung a bauteilrelevanten Proben, Mater. Test., 2001, 43(7–8), p 288–293. https://doi.org/10.1515/mt-2001-437-807

    Article  CAS  Google Scholar 

  37. B.-N. Wang, F. Wang, Z. Wang, Z. Liu and P.-L. Mao, Fabrication of fine-grained, high strength and toughness Mg alloy by extrusion−shearing process, Trans. Nonferrous Metals Soc. China, 2021, 31(3), p 666–678. https://doi.org/10.1016/S1003-6326(21)65528-0

    Article  CAS  Google Scholar 

  38. Y.-Z. Ma, D. Wang, H.-X. Li, C.-L. Yang, F.-S. Yuan and J.-S. Zhang, Microstructure, mechanical properties and corrosion behavior of quaternary Mg-1Zn-0Ca-xAg alloy wires applied as degradable anastomotic nails, Trans. Nonferrous Metals Soc. China, 2021, 31(1), p 111–124. https://doi.org/10.1016/S1003-6326(20)65481-4

    Article  CAS  Google Scholar 

  39. C.-H. Fan, L. Ou, Z.-Y. Hu, S. Wang and J.-H. Wang, Effect of rapid cold stamping on fracture behavior of long strip S′phase in Al−Cu−Mg alloy, Trans. Nonferrous Metals Soc. China., 2020, 30(10), p 2590–2598. https://doi.org/10.1016/S1003-6326(20)65404-8

    Article  CAS  Google Scholar 

  40. J.-Y. Zhang, L.-J. Zuo, J. Feng and W.-J. Ding, Effect of thermal exposure on microstructure and mechanical properties of Al−Si−Cu−Ni−Mg alloy produced by different casting technologies, Trans. Nonferrous Metals Soc. China, 2020, 30(7), p 1717–1730. https://doi.org/10.1016/S1003-6326(20)65333-X

    Article  CAS  Google Scholar 

  41. Q. Chen, Z.D. Zhao, G. Chen and B. Wang, Effect of accumulative plastic deformation on generation of spheroidal structure, thixoformability and mechanical properties of large-size AM60 magnesium alloy, J. Alloy. Compd., 2015, 632(5), p 190–200. https://doi.org/10.1016/j.jallcom.2015.01.185

    Article  CAS  Google Scholar 

Download references

Acknowledgment

National Natural Science Foundation of China (no. 52071042, no. 51771038); Chongqing Talents Program Project (no. CQYC202003047); Chongqing Natural Science Foundation Project (no. cstc2018jcyjAX0249, no. cstc2018jcyjAX0653).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Magnesium. The issue was organized by Prof. C. (Ravi) Ravindran, Dr. Raja Roy, Mr. Payam Emadi, and Mr. Bernoulli Andilab, Ryerson University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, O., Hu, H., Zhao, H. et al. Microstructures and Corrosion Behavior of AZ61 Magnesium Alloy Prepared by Extrusion–Shear with Different Die Channel Angles. J. of Materi Eng and Perform 32, 2616–2625 (2023). https://doi.org/10.1007/s11665-022-07071-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07071-1

Keywords

Navigation