Skip to main content
Log in

Effect of Drag Finish Post-processing on Surface Integrity and Wear Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion Additive Manufacturing

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The Additive Manufacturing (AM) process provides opportunities to fabricate products with complex geometries including conformal cooling channels, etc. While having such an advantage, the low surface quality of the products is a disadvantage of laser powder bed fusion (LPBF). Because of that, a post-process is needed to improve the surface quality. Drag Finish (DF) is a surface enhancing operation based on removing small amounts of sawdust from the workpiece that is in contact with abrasive media. This study presents the effect of the drag finish post-processing parameters on wear and surface features of additively manufactured Ti-6Al-4V samples. Processing parameters considered are abrasive media, processing duration, and speed. This study reveals that the surface roughness of as-built specimens can be reduced up to 94% by implementing appropriate process parameters during post-processing operations. Drag finish also results in work hardening on the surface of the specimen and hence increased hardness of the treated surface by 6%. This eventually helps to improve the wear resistance of additively fabricated specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Herzog et al., Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371–392. https://doi.org/10.1016//j.actamat.2016.07.019

    Article  CAS  Google Scholar 

  2. B. Zhang, L. Dembinski and C. Coddet, The Study of the Laser Parameters and Environment Variables Effect on Mechanical Properties of High Compact Parts Elaborated by Selective Laser Melting 316L Powder, Mater. Sci. Eng. A, 2013, 584, p 21–31. https://doi.org/10.1016//j.msea.2013.06.055

    Article  CAS  Google Scholar 

  3. Y. Kaynak and O. Kitay, Porosity, Surface Quality, Microhardness and Microstructure of Selective Laser Melted 316L Stainless Steel Resulting From Finish Machining, J. Manuf. Mater. Process., 2018, 2(2), p 36. https://doi.org/10.3390//jmmp2020036

    Article  CAS  Google Scholar 

  4. Y. Karabulut and Y. Kaynak, Drilling Process and Resulting Surface Properties of Inconel 718 Alloy Fabricated by Selective Laser Melting Additive Manufacturing, Procedia CIRP, 2020, 87, p 355–359. https://doi.org/10.1016//j.procir.2020.02.110

    Article  Google Scholar 

  5. F. Salvatore et al., Experimental and Numerical Study of Media Action During Tribofinishing in the Case of SLM Titanium Parts, Procedia CIRP, 2017, 58, p 451–456. https://doi.org/10.1016/j.jmbbm.2017.03.017

    Article  CAS  Google Scholar 

  6. B. Van Hooreweder et al., CoCr F75 Scaffolds Produced by Additive Manufacturing: Influence of Chemical Etching on Powder Removal and Mechanical Performance, J. Mech. Behav. Biomed. Mater., 2017, 70, p 60–67. https://doi.org/10.1016//j.jmbbm.2017.03.017

    Article  Google Scholar 

  7. A. Triantaphyllou et al., Surface Texture Measurement for Additive Manufacturing, Surf. Topogr. Metrol. Prop., 2015, 3(2), p 024002. https://doi.org/10.1088/2051-672X/3/2/024002

    Article  CAS  Google Scholar 

  8. O. Hronek et al., Influences of Holders Speed on the Cutting Edge During Drag Finishing, Manuf. Technol., 2016, 16(5), p 933–939. https://doi.org/10.21062/ujep/x.2016/a1213/MT/16/5/933

    Article  Google Scholar 

  9. P.C. Priarone et al., Effects of Cutting Angle, Edge Preparation, and Nano-Structured Coating on Milling Performance of a Gamma Titanium Aluminide, J. Mater. Process. Technol., 2012, 212(12), p 2619–2628. https://doi.org/10.1016/j.jmatprotec.2012.07.021

    Article  CAS  Google Scholar 

  10. E. Uhlmann and M. Kopp, Measurement and Modeling of Contact Forces during Robot-guided Drag Finishing, Procedia CIRP, 2021, 102, p 518–523. https://doi.org/10.1016/j.procir.2021.09.088

    Article  Google Scholar 

  11. I. Malkorra et al., The Influence of the Process Parameters of Drag Finishing on the Surface Topography of Aluminium Samples, CIRP J. Manuf. Sci. Technol., 2020, 31, p 200–209. https://doi.org/10.1016/j.cirpj.2020.05.010

    Article  Google Scholar 

  12. Y. Kaynak and O. Kitay, The Effect of Post-Processing Operations on Surface Characteristics of 316L Stainless Steel Produced by Selective Laser Melting, Addit. Manuf., 2019, 26, p 84–93. https://doi.org/10.1016/j.addma.2018.12.021

    Article  CAS  Google Scholar 

  13. H. Khan et al., The Impact of Aging and Drag-Finishing on the Surface Integrity and Corrosion Behavior of the Selective Laser Melted Maraging Steel Samples, Materialwiss. Werkstofftech., 2021, 52(1), p 60–73. https://doi.org/10.1002/mawe.202000139

    Article  CAS  Google Scholar 

  14. Y. Kaynak and E. Tascioglu, Post-Processing Effects on the Surface Characteristics of Inconel 718 Alloy Fabricated by Selective Laser Melting Additive Manufacturing, Prog. Addit. Manuf., 2020, 5(2), p 221–234. https://doi.org/10.1007/s40964-019-00099-1

    Article  Google Scholar 

  15. A.S. Patil et al., Effect of TiB2 Addition on the Microstructure and Wear Resistance of Ti-6Al-4V Alloy Fabricated Through Direct Metal Laser Sintering (DMLS), J. Alloys Compd., 2019, 777, p 165–173. https://doi.org/10.1016/j.jallcom.2018.10.308

    Article  CAS  Google Scholar 

  16. J. Ju et al., Tribological Investigation of Additive Manufacturing Medical Ti6Al4V Alloys Against Al2O3 Ceramic Balls in Artificial Saliva, J. Mech. Behav. Biomed. Mater., 2020, 104, p 103602. https://doi.org/10.1016/j.jmbbm.2019.103602

    Article  CAS  Google Scholar 

  17. G. Strano et al., Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting, J. Mater. Process. Technol., 2013, 213(4), p 589–597. https://doi.org/10.1016/j.jmatprotec.2012.11.011

    Article  CAS  Google Scholar 

  18. M. Xia et al., Influence of Hatch Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability During Additive Manufacturing of Inconel 718 Alloy, Int. J. Mach. Tools Manuf, 2016, 109, p 147–157. https://doi.org/10.1016/j.ijmachtools.2016.07.010

    Article  Google Scholar 

  19. M. Barletta et al., A Comparative Evaluation of Fluidized Bed Assisted Drag Finishing and Centrifugal Disk Dry Finishing, Eng. Sci. Technol. Int. J., 2014, 17(2), p 63–72. https://doi.org/10.1016/j.jestch.2014.03.007

    Article  Google Scholar 

  20. D. Ding et al., Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests, Int. J. Adv. Manuf. Technol., 2015, 81(1), p 465–481. https://doi.org/10.1007/s00170-015-7077-3

    Article  Google Scholar 

  21. F. Hashimoto and D.B. DeBra, Modelling and Optimization of Vibratory Finishing Process, CIRP Ann., 1996, 45(1), p 303–306. https://doi.org/10.1016/S0007-8506(07)63068-6

    Article  Google Scholar 

  22. B. Zhang, Y. Li and Q. Bai, Defect Formation Mechanisms in Selective Laser Melting: A Review, Chin. J. Mech. Eng., 2017, 30(3), p 515–527. https://doi.org/10.1007/s10033-017-0184-3

    Article  Google Scholar 

  23. D.T. Ardi et al., Investigations of the Residual Stresses and Surface Integrity Generated by a Novel Mechanical Surface Strengthening, Residual Stresses 2016, 2017 https://doi.org/10.21741/9781945291173-53

    Article  Google Scholar 

  24. A. Khorasani et al., The Effect of SLM Process Parameters on Density, Hardness, Tensile Strength and Surface Quality of Ti-6Al-4V, Addit. Manuf., 2019, 25, p 176–186. https://doi.org/10.1016/j.addma.2018.09.002

    Article  CAS  Google Scholar 

  25. O. Zambrano et al., Running-in Period for the Abrasive Wear of Austenitic Steels, Wear, 2020, 452, 203298. https://doi.org/10.1016/j.wear.2020.203298

    Article  CAS  Google Scholar 

  26. F. Bartolomeu et al., Wear Behavior of Ti6Al4V Biomedical Alloys Processed by Selective Laser Melting Hot Pressing and Conventional Casting, Trans. Nonferrous Metals Soc. China, 2017, 27(4), p 829–838. https://doi.org/10.1016/S1003-6326(17)60060-8

    Article  CAS  Google Scholar 

  27. C. Mary et al., Pressure and Temperature Effects on Fretting Wear Damage of a Cu-Ni-In Plasma Coating Versus Ti17 Titanium Alloy Contact, Wear, 2011, 272(1), p 18–37. https://doi.org/10.1016/j.wear.2011.06.008

    Article  CAS  Google Scholar 

  28. R. Merhej and S. Fouvry, Contact Size Effect on Fretting Wear Behaviour: Application to an AISI 52100/AISI 52100 Interface, Lubr. Sci., 2009, 21(3), p 83–102. https://doi.org/10.1002/ls.74

    Article  Google Scholar 

  29. J. Silva et al., Corrosion and Tribocorrosion Behavior of Ti-TiB-TiNx in-Situ Hybrid Composite Synthesized by Reactive Hot Pressing, J. Mech. Behav. Biomed. Mater., 2017, 74, p 195–203. https://doi.org/10.1016/j.jmbbm.2017.05.041

    Article  CAS  Google Scholar 

  30. Z. Wang et al., Influence of Ultrasonic Surface Rolling on Microstructure and Wear Behavior of Selective Laser Melted Ti-6Al-4V Alloy, Materials, 2017, 10(10), p 1203. https://doi.org/10.3390/ma10101203

    Article  CAS  Google Scholar 

  31. S. Ehtemam-Haghighi et al., Evaluation of Mechanical and Wear Properties of TixNb7Fe Alloys Designed for Biomedical Applications, Mater. Des., 2016, 111, p 592–599. https://doi.org/10.1016/j.matdes.2016.09.029

    Article  CAS  Google Scholar 

  32. H. Li, M. Ramezani and Z.W. Chen, Dry Sliding Wear Performance and Behaviour of Powder Bed Fusion Processed Ti-6Al-4V Alloy, Wear, 2019, 440, p 203103. https://doi.org/10.1016/j.wear.2019.203103

    Article  CAS  Google Scholar 

  33. I. Hutchings, Tribology: Friction and Wear of Engineering Materials, Butterworth-Heinemann, Oxford, 1992, p 78–84

    Google Scholar 

  34. M. Uçurum et al., Farklı kesme parametreleriyle işlenmiş 316LVM paslanmaz çelik malzemesinin talaşlı imalat-yüzey bütünlüğü-aşınma direnci arasındaki ilişkinin incelenmesi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi., 2021, 27(4), p 449–545. https://doi.org/10.5505/pajes.2020.93284

    Article  Google Scholar 

  35. N.P. Suh, The Delamination Theory of Wear, Wear, 1973, 25(1), p 111–124. https://doi.org/10.1016/0043-1648(73)90125-7

    Article  CAS  Google Scholar 

  36. J. Yang et al., Role of Molten Pool Mode on Formability, Microstructure and Mechanical Properties of Selective Laser Melted Ti-6Al-4V Alloy, Mater. Des., 2016, 110, p 558–570. https://doi.org/10.1016/j.matdes.2016.08.036

    Article  CAS  Google Scholar 

  37. P. Podra and S. Andersson, Simulating Sliding Wear With Finite Element Method, Tribol. Int., 1999, 32(2), p 71–81. https://doi.org/10.1016/S0301-679X(99)00012-2

    Article  CAS  Google Scholar 

  38. P. Mercelis and J.P. Kruth, Residual Stresses in Selective Laser Sintering and Selective Laser Melting, Rapid Prototype. J., 2006 https://doi.org/10.1108/13552540610707013

    Article  Google Scholar 

  39. G.D. Revankar et al., Wear Resistance Enhancement of Titanium Alloy (Ti-6Al-4V) by Ball Burnishing Process, J. Market. Res., 2017, 6(1), p 13–32. https://doi.org/10.1016/j.jmrt.2016.03.007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was also supported by the Research Project Program of Marmara University (BAPKO, Project FEN-C-YLP-250919-0271). Authors wish to thank to Marmara University and University Teknologi Malaysia for the collaboration in this research under the Grant Nos. 00P07 and 08G37.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Safa Yılmaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güneşsu, E., Yılmaz, M.S., Taşcıoğlu, E. et al. Effect of Drag Finish Post-processing on Surface Integrity and Wear Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion Additive Manufacturing. J. of Materi Eng and Perform 31, 9962–9971 (2022). https://doi.org/10.1007/s11665-022-07038-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07038-2

Keywords

Navigation