Skip to main content
Log in

Analyzing the Influence of Simultaneously Austenitization and Multi-Directional Boriding on the Surface and Subsurface of H13 Tool Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

AISI H13 hot tool steel is very much famous for elevated temperature operations such as manufacturing of dies, molds, glass, and plastics. In order to extend the lifespan, surface hardening treatments such as nitriding, carburizing and boriding are as famous as austenitizing followed by dual tempering for overall core-structure enhancement. In this study, boriding (at 960 °C for 3 h) is combined with the conventionally used heat-treatments for the surface enhancement of H13 dies and substrates. Feasibility analysis, detailed surface and subsurface characterization, SEM, EDX and WDX analyses on the formed Fe2B and CrB rich coatings are performed. Results showed that faster cooling rates at the die openings, shrinkage of the middle sections of die and thermal mismatches between the hard layers and host material caused the formation of cracks parallel and perpendicular to the die orifices. Formation of ferrite pits, which were characterized with lower hardness, was witnessed in the vicinity of hard layers. This was attributed to accumulation of Si under the boride layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data acquired during this study can be shared by requesting the authors.

References

  1. N.B. Dhokey, S.S. Maske, and P. Ghosh, Effect of Tempering and Cryogenic Treatment on Wear and Mechanical Properties of Hot Work Tool Steel (H13), Mater. Today Proc., 2021, 43, p 3006–3013.

    Article  CAS  Google Scholar 

  2. S. Divagar, M. Sudhahar, T.T.M. Kannan, P. Vijayakumar, and R. Tamizhselvan, Enhancement of Wear Resistance in AISI h13 Tool Steel by Liquid Carburizing, J. Emerg. Technol., 2020, 8(10), p 156–160.

    Google Scholar 

  3. Z.M. Gasem, Cracking in a Multiple Gas-nitrided H13 Aluminum Extrusion Mandrel, Eng. Fail Anal., 2013, 31, p 68–75.

    Article  CAS  Google Scholar 

  4. F. Hakami, A. Pramanik, and A.K. Basak, Duplex Surface Treatment of Steels by Nitriding and Chromizing, Aust. J. Mech., 2017, 15(1), p 55–72.

    Article  Google Scholar 

  5. J. Peng, Z. Zhu, and D. Su, Sliding Wear of Nitrided and Duplex Coated H13 Steel Against Aluminium Alloy, Tribol. Int., 2019, 129, p 232–238.

    Article  CAS  Google Scholar 

  6. X.L. Sun, H.J. Guo, X.C. Chen, A.G. Ning, G.W. Du, and C.B. Shi, Formation Mechanism of Primary Carbide in H13 Steel During Electroslag Remelting Process, Iron Steel, 2014, 49(05), p 68–73.

    CAS  Google Scholar 

  7. Y. Lian, J.F. Huang, B.Y. Zhang, C. Zhang, and J. Zhang, Effect of Annealing Process on Spheroidized Microstructure and Mechanical Properties of H13 Steel, Trans. Mater. Heat Treat., 2015, 36(03), p 118–124.

    CAS  Google Scholar 

  8. N. Angang, G. Hanjie, C. Xichun, and W. Mingbo, Precipitation Behaviors and Strengthening of Carbides in H13 Steel During Annealing, Mater. Trans., 2015, 56(4), p 581–586.

    Article  Google Scholar 

  9. F. Nair and M. Hamamcı, Effect of In-Situ Synthesized Boride Phases on the Impact Behavior of Iron-Based Composites Reinforced by B4C Particles, Metals, 2020, 10(5), p 554.

    Article  CAS  Google Scholar 

  10. I. Campos-Silva, J. Martinez-Trinidad, M. Doñu-Ruíz, G. Rodríguez-Castro, E. Hernandez-Sanchez, and O. Bravo-Bárcenas, Interfacial Indentation Test of FeB/Fe2B Coatings, Surf. Coat. Technol., 2011, 206(7), p 1809–1815.

    Article  CAS  Google Scholar 

  11. B. Mebarek, A. Benguelloula, and A. Zanoun, Effect of Boride Incubation Time During the Formation of Fe2B Phase, Mater. Res., 2018, 21(1), p 1–7.

    Google Scholar 

  12. U. Sen, S. Sen, and F. Yilmaz, An Evaluation of Some Properties of Borides Deposited on Boronized Ductile Iron, J. Mater. Process. Technol., 2004, 148(1), p 1–7.

    Article  CAS  Google Scholar 

  13. J. Lentz, A. Röttger, and W. Theisen, Hardness and Modulus of Fe2B, Fe3 (C, B), and Fe23 (C, B) 6 Borides and Carboborides in the Fe-CB System, Mater. Charact., 2018, 135, p 192–202.

    Article  CAS  Google Scholar 

  14. S. Ma, J. Zhang, and S. Ma, Abrasion Wear Behavior of a Forged and Unforged Fe-B Alloy, Mater. Test., 2016, 58(2), p 127–132.

    Article  CAS  Google Scholar 

  15. D. Yi, J. Xing, S. Ma, H. Fu, W. Chen, Y. Li, J. Yan, J. Zhang, Z. Liu, and J. Zhu, Three-Body Abrasive Wear Behavior of Low Carbon Fe–B Cast Alloy and Its Microstructures Under Different Casting Process, Tribol. Lett., 2011, 42(1), p 67–77.

    Article  CAS  Google Scholar 

  16. R.M. Triani, L.F.D.A. Gomes, A.L. Neto, G.E. Totten, and L.C. Casteletti, Production and Characterization of Boride and Carbide Layers on AISI 15B30 Steel, J. Mater. Eng. Perform., 2020, 29(6), p 3534–3541.

    Article  CAS  Google Scholar 

  17. C. Martini, G. Palombarini, G. Poli, and D. Prandstraller, Sliding and Abrasive Wear Behaviour of Boride Coatings, Wear, 2004, 256(6), p 608–613.

    Article  CAS  Google Scholar 

  18. J.C. Outeiro, Residual Stresses in Machining, Elsevier, Amsterdam, 2020.

    Book  Google Scholar 

  19. B. Selçuk, R. Ipek, M.B. Karamiş, and V. Kuzucu, An Investigation on Surface Properties of Treated Low Carbon and Alloyed Steels (Boriding and Carburizing), J. Mater. Process. Technol., 2000, 103(2), p 310–317.

    Article  Google Scholar 

  20. A. Çalık, O. Özbakır, S. Karakaş, and N. Uçar, Investigation of the Erosive Wear Resistance of Boronized Ash-Blowing Nozzles, Acta Phys. Pol., 2017, 131(2017), p 252–254.

    Article  Google Scholar 

  21. S.Y. Lee, G.S. Kim, and B.-S. Kim, Mechanical Properties of Duplex Layer Formed on AISI 403 Stainless Steel by Chromizing and Boronizing Treatment, Surf. Coat. Technol., 2004, 177–178, p 178–184.

    Article  Google Scholar 

  22. G.K. Sireli, Molten salt baths: electrochemical boriding, Encyclopedia of Iron, Steel, and Their Alloys, 1st ed., R. Colás, G.E. Totten Ed., Taylor & Francis, Abingdon, 2016, p 2284–2300

    Chapter  Google Scholar 

  23. W.R. Prudente, J.F.C. Lins, R.P. Siqueira, and S.N. Priscila, Microstructural Evolution Under Tempering Heat Treatment in AISI H13 Hot-Work Tool Steel, Int. J. Eng. Res. Appl., 2017, 7(4), p 67–71.

    Google Scholar 

  24. Y. Guanghua, H. Xinmin, W. Yanqing, Q. Xingguo, Y. Ming, C. Zuoming, and J. Kang, Effects of Heat Treatment on Mechanical Properties of h13 Steel, Met. Sci. Heat Treat., 2010, 52(7), p 393–395.

    Article  Google Scholar 

  25. A. Bahrami, S.H.M. Anijdan, M.A. Golozar, M. Shamanian, and N. Varahram, Effects of Conventional Heat Treatment on Wear Resistance of AISI H13 Tool Steel, Wear, 2005, 258(5), p 846–851.

    Article  CAS  Google Scholar 

  26. A. Günen, İH. Karahan, M.S. Karakaş, B. Kurt, Y. Kanca, V.V. Çay, and M. Yıldız, Properties and Corrosion Resistance of AISI H13 Hot-Work Tool Steel with Borided B4C Powders, Met. Mater. Int., 2020, 26(9), p 1329–1340.

    Article  Google Scholar 

  27. R.C. Morón, I. Hernández-Onofre, A.D. Contla-Pacheco, D. Bravo-Bárcenas, and I. Campos-Silva, Friction and Reciprocating Wear Behavior of Borided AISI H13 Steel Under Dry and Lubricated Conditions, J. Mater. Eng. Perform., 2020, 29(7), p 4529–4540.

    Article  Google Scholar 

  28. K. Genel, Boriding Kinetics of H13 Steel, Vacuum, 2006, 80(5), p 451–457.

    Article  CAS  Google Scholar 

  29. A.P. Krelling, J.C.G. Milan, and C.E. da Costa, Tribological Behaviour of Borided H13 Steel with Different Boriding Agents, Surf. Eng., 2015, 31(8), p 581–587.

    Article  CAS  Google Scholar 

  30. M.S. Gök, Y. Küçük, A. Erdoğan, M. Öge, E. Kanca, and A. Günen, Dry Sliding Wear Behavior of Borided Hot-Work Tool Steel at Elevated Temperatures, Surf. Coat. Technol., 2017, 328, p 54–62.

    Article  Google Scholar 

  31. S. Taktak, Some Mechanical Properties of Borided AISI H13 and 304 Steels, Mater. Des., 2007, 28(6), p 1836–1843.

    Article  CAS  Google Scholar 

  32. G.K. Kariofillis, G.E. Kiourtsidis, and D.N. Tsipas, Corrosion Behavior of Borided AISI H13 Hot Work Steel, Surf. Coat. Technol., 2006, 201(1), p 19–24.

    Article  CAS  Google Scholar 

  33. R. Choteborsky, M. Kolarikova, and B.B. Stunova, The Morphology Change of Iron Diboride in the Fe-B Alloy During Deformation, MM Sci., 2012, 3, p 338–340.

    Article  Google Scholar 

  34. I. Campos-Silva, E. Hernandez-Sanchez, G. Rodríguez-Castro, A. Rodríguez-Pulido, C. López-García, and M. Ortiz-Domínguez, Indentation Size Effect on the Fe2B/Substrate Interface, Surf. Coat. Technol., 2011, 206(7), p 1816–1823.

    Article  CAS  Google Scholar 

  35. I. Campos-Silva, M. Ortiz-Domínguez, O. Bravo-Bárcenas, M. Doñu-Ruiz, D. Bravo-Bárcenas, C. Tapia-Quintero, and M. Jiménez-Reyes, Formation and Kinetics of FeB/Fe2B Layers and Diffusion Zone at the Surface of AISI 316 Borided Steels, Surf. Coat. Technol., 2010, 205(2), p 403–412.

    Article  CAS  Google Scholar 

  36. O. Allaoui, N. Bouaouadja, and G. Saindernan, Characterization of Boronized Layers on a XC38 Steel, Surf. Coat. Technol., 2006, 201(6), p 3475–3482.

    Article  CAS  Google Scholar 

  37. I. Campos, O. Bautista, G. Ramírez, M. Islas, J. De La Parra, and L. Zúñiga, Effect of Boron Paste Thickness on the Growth Kinetics of Fe2B Boride Layers during the Boriding Process, Appl. Surf. Sci., 2005, 243(1), p 429–436.

    Article  CAS  Google Scholar 

  38. I. Campos, G. Ramírez, U. Figueroa, and C.V. Velázquez, Paste Boriding Process: Evaluation of Boron Mobility on Borided Steels, Surf. Eng., 2007, 23(3), p 216–222.

    Article  CAS  Google Scholar 

  39. C. Bindal and A.H. Ucisik, Characterization of Boriding of 0.3% C, 0.02% P Plain Carbon Steel, Vacuum, 2007, 82(1), p 90–94.

    Article  CAS  Google Scholar 

  40. O. Ozdemir, M. Omar, M. Usta, S. Zeytin, C. Bindal, and A. Ucisik, An Investigation on Boriding Kinetics of AISI 316 Stainless Steel, Vacuum, 2008, 83(1), p 175–179.

    Article  CAS  Google Scholar 

  41. I. Ozbek, Mechanical Properties and Kinetics of Borided AISI M50 Bearing Steel, Arab. J. Sci. Eng., 2014, 39(6), p 5185–5192.

    Article  CAS  Google Scholar 

  42. P. Jurči and M. Hudáková, Diffusion Boronizing of H11 Hot Work Tool Steel, J. Mater. Eng. Perform., 2011, 20(7), p 1180–1187.

    Article  Google Scholar 

  43. H.C. Fiedler and W.J. Hayes, The Formation of a Soft Layer in Borided Hot Work Die Steels, Metall. Trans., 1970, 1(4), p 1071–1073.

    Article  CAS  Google Scholar 

  44. B. Chicco, W.E. Borbidge, and E. Summerville, Engineering the Subsurface of Borided Aisi H13 Steel, Surf. Eng., 1998, 14(1), p 25–30.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Research Fund (FBA 02-022-1) of Erciyes University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Numan Zafar.

Ethics declarations

Conflict of interest

The authors have no financial interests or personal connections that could have influenced the nature and results of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, F., Zafar, H.M.N., Cerit, A.A. et al. Analyzing the Influence of Simultaneously Austenitization and Multi-Directional Boriding on the Surface and Subsurface of H13 Tool Steel. J. of Materi Eng and Perform 31, 9791–9801 (2022). https://doi.org/10.1007/s11665-022-07036-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07036-4

Keywords

Navigation