Skip to main content

Advertisement

Log in

Enhanced Mechanical Properties and Corrosion Resistance by Minor Gd Alloying with a Hot-Extruded Mg Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure, mechanical properties, and corrosion resistance to simulated body fluid solution behavior of as-extruded Mg-1.8Zn-0.5Zr alloys with different Gd additions are investigated. It is found that dynamic recrystallization occurs in the alloys during extrusion and the grain size gradually decreases with Gd alloying. The mechanical properties and corrosion resistance to simulated body fluid of the investigated alloys enhance firstly and then weaken with the increase in Gd content. The results reveal that the Mg-1.8Zn-0.5Zr with a 1.5 wt.% Gd addition has optimized mechanical properties and corrosion resistance. A three-stage corrosion mechanism, including sequential stages from hydroxidation, phosphatization and hydroxidation, to formation-dissolution dynamic equilibrium, is proposed through electrochemical measurements and corroded surface analyses. This study reveals the extruded Mg-1.8Zn-0.5Zr-1.5Gd alloy can be regarded as a potential candidate for using as biodegradable magnesium implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.X. Liu, M. Curioni, and Z. Liu, Correlation between Electrochemical Impedance Measurements and Corrosion Rates of Mg-1Ca Alloy in Simulated Body Fluid, Electrochim. Acta., 2018, 264, p 101–108.

    Article  CAS  Google Scholar 

  2. D. Mareci, G. Bolat, J. Izquierdo, C. Crimu, C. Munteanu, I. Antoniac, and R.M. Souto, Electrochemical Characteristics of Bioresorbable Binary MgCa Alloys in Ringer’s Solution: Revealing the Impact of Local pH Distributions during In-Vitro Dissolution, Mater. Sci. Eng. C, 2016, 60, p 402–410.

    Article  CAS  Google Scholar 

  3. Y.J. Chen, Z.G. Xu, C. Smith, and J. Sankar, Recent Advances on the Development of Magnesium Alloys for Biodegradable Implants, Acta Biomater., 2014, 10, p 4561–4573.

    Article  CAS  Google Scholar 

  4. Y.C. Wan, S.Y. Xu, C.M. Liu, Y.H. Gao, S.N. Jiang, and Z.Y. Chen, Enhanced Strength and Corrosion Resistance of Mg-Gd-Y-Zr Alloy with Ultrafine Grains, Mater. Lett., 2018, 213, p 274–277.

    Article  CAS  Google Scholar 

  5. X.N. Gu, Y.F. Zheng, S.P. Zhong, T.F. Xi, J.Q. Wang, and W.H. Wang, Corrosion of, and Cellular Responses to Mg-Zn-Ca Bulk Metallic Glasses, Biomaterials, 2010, 31, p 1093–1103.

    Article  CAS  Google Scholar 

  6. R.C. Zeng, W. Ke, Y.B. Xu, E.H. Han, and Z.Y. Zhu, Recent Development and Application of Magnesium Alloys, Acta. Metall. Sin., 2001, 37, p 673–685.

    CAS  Google Scholar 

  7. X.N. Gu, N. Li, Y.F. Zheng, and L.Q. Ruan, In Vitro Degradation Perfermance and Biological Response of a Mg-Zn-Zr Alloy, Mater. Sci. Eng. B, 2011, 176, p 1778–1784.

    Article  CAS  Google Scholar 

  8. X.B. Zhang, Z.X. Ba, Q. Wang, Y.J. Wu, Z.Z. Wang, and Q. Wang, Uniform Corrosion Behavior of GZ51K Alloy with Long Period Stacking Ordered Structure for Biomedical Application, Corros. Sci., 2014, 88, p 1–5.

    Article  CAS  Google Scholar 

  9. Z.Q. Zhang, X. Liu, W.Y. Hu, J.H. Li, Q.C. Le, L. Bao, Z.J. Zhu, and J.Z. Cui, Microstructures, Mechanical Properties and Corrosion Behaviors of Mg-Y-Zn-Zr Alloys with Specific Y/Zn Mole Ratios, J. Alloys. Compd., 2015, 624, p 116–125.

    Article  CAS  Google Scholar 

  10. J.Y. Zhang, Z.X. Kang, and L.L. Zhou, Microstructure Evolution and Mechanical Properties of Mg-Gd-Nd-Zn-Zr Alloy Processed by Equal Channel Angular Processing, Mater. Sci. Eng. A, 2015, 647, p 184–190.

    Article  CAS  Google Scholar 

  11. S. Gollapudi, Grain Size Distribution Effects on the Corrosion Behaviour of Materials, Corros. Sci., 2012, 62, p 90–94.

    Article  CAS  Google Scholar 

  12. X.B. Zhang, Z.X. Ba, Z.Z. Wang, Y.J. Wu, and Y.J. Xue, Effect of LPSO Structure on Mechanical Properties and Corrosion Behavior of As-Extruded GZ51K Magnesium Alloy, Mater. Lett., 2016, 163, p 250–253.

    Article  CAS  Google Scholar 

  13. F.Y. Cao, Z.M. Shi, G.L. Song, M. Liu, M.S. Dargusch, and A. Atrens, Influence of Hot Rolling on the Corrosion Behavior of Several Mg-X Alloys, Corros. Sci., 2015, 90, p 176–191.

    Article  CAS  Google Scholar 

  14. K. Liu, J.H. Zhang, L.L. Rokhlin, F.M. Elkin, D.X. Tang, and J. Meng, Microsructures and Mechanical Properties of Extruded Mg-8Gd-0.4Zr Alloys Containing Zn, Mater. Sci. Eng. A, 2009, 505, p 13–19.

    Article  Google Scholar 

  15. X.B. Zhang, G.Y. Yuan, L. Mao, J.L. Niu, and W.J. Ding, Biocorrosion Properties of as-Extruded Mg-Nd-Zn-Zr Alloy Compared with Commercial AZ31 and WE43 Alloys, Mater. Lett., 2012, 66, p 209–211.

    Article  CAS  Google Scholar 

  16. H. Yao, J.B. Wen, Y. Xiong, Y. Lu, and M. Huttula, Microstructure Evolution in Mg-Zn-Zr-Gd Biodegradable Alloy: The Decisive Bridge Between Extrusion Temperature and Performace, Front. Chem., 2018, 6, p 71.

    Article  Google Scholar 

  17. H. Huang, G.Y. Yuan, C.L. Chen, W.J. Ding, and Z.C. Wang, Excellent Mechanical Properties of an Ultrafine Grained Quasicrystalline Strengthened Magnesium Alloy with Multi-Modal Microstructure, Mater. Lett., 2013, 107, p 181–184.

    Article  CAS  Google Scholar 

  18. S.D. Wang, D.K. Xu, X.B. Chen, E.H. Han, and C. Dong, Effect of Heat Treatment on the corrosion resistance and mechanical properties of an as-forged Mg-Zn-Y-Zr alloy, Corros. Sci., 2015, 92, p 228–236.

    Article  CAS  Google Scholar 

  19. H.W. Miao, H. Huang, Y.J. Shi, H. Zhang, J. Pei, and G.Y. Yuan, Effects of Solution Treatment before Extrusion on the Microstructure, Mechanical Properties and Corrosion of Mg-Zn-Gd Alloy in Vitro, Corros. Sci., 2017, 122, p 90–99.

    Article  CAS  Google Scholar 

  20. J.M. Seitz, A. Lucas, and M. Kirschenr, Magnesium-Based Compression Screws: A Novelty in the Clinical use of Implants, Jom., 2016, 68, p 1177–1181.

    Article  CAS  Google Scholar 

  21. J.C. Bousquet, S. Sanini, D.D. Stark, P.F. Hahn, M. Nigam, J. Wittennberg, and J.T. Ferrucci, Gd-Dota: Characterization of a New Paramagnetic Complex, Radiology, 1988, 166, p 693–698.

    Article  CAS  Google Scholar 

  22. H. Yao, B.Y. Fang, H.N. Shi, H. Singh, M. Huttula, and W. Cao, Microstructures, Mechanical Properties and Degradation Behavior of As-Extruded Mg-1.8Zn-0.5Zr-xGd (0≤x≤2.5 wt.%) Biodegradable Alloys, J. Mater. Sci., 2021, 56, p 11137–11153.

    Article  CAS  Google Scholar 

  23. H. Yao, J.B. Wen, Y. Xiong, Y. Liu, Y. Lu, and W. Cao, Microstructures, Mechanical Properties and Corrosion Behavior of As-Cast Mg-2.0Zn-0.5Zr-xGd (wt.%) Biodegradable Alloys, Materials, 2018, 11, p 1564.

    Article  Google Scholar 

  24. H. Yao, J.B. Wen, Y. Xiong, Y. Lu, F.Z. Ren, and W. Cao, Extrusion Temperature Impacts on Biometallic Mg-2.0Zn-0.5Zr-3.0Gd (wt.%) Solid-Solution Alloy, J. Alloys. Compd., 2018, 739, p 468–480.

    Article  CAS  Google Scholar 

  25. M. Ascencio, M. Pekguleryuz, and S. Omanovic, An Investigation of the Corrosion Mechanisms of WE43 Mg Alloy in a Modified Simulated Body Fluid Solution: The Effect of Electrolyte Renewal, Corros. Sci., 2015, 91, p 297–310.

    Article  CAS  Google Scholar 

  26. J.L. Li, L.L. Tan, P. Wan, X.M. Yu, and K. Yang, Study on Microstructure and Properties of Extruded Mg-2Nd-0.2Zn Alloy as Potential Biodegradable Implant Material, Mater. Sci. Eng. C, 2015, 49, p 422–429.

    Article  CAS  Google Scholar 

  27. J. Liu, L.X. Yang, C.Y. Zhang, B. Zhang, T. Zhang, Y. Li, K.M. Wu, and F.H. Wang, Role of the LPSO Structure in the Improvement of Corrosion Resistance of Mg-Gd-Zn-Zr Alloys, J. Alloys. Compd., 2019, 782, p 648–658.

    Article  CAS  Google Scholar 

  28. J.A. Österreicher, M. Kumar, A. Schiffl, S. Schwarz, and G.R. Bourret, Secondary Precipitation during Homogenization of Al-Mg-Si Alloys: Influence on High Temperature Flow Stress, Mater. Sci. Eng. C, 2017, 687, p 175–180.

    Article  Google Scholar 

  29. L.L. Wei and L. Chang, Structure of Coherent Mg3TiO4 Oxide Formed Between TiN and MgO, Mater. Lett., 2018, 213, p 227–230.

    Article  CAS  Google Scholar 

  30. B. Homayun and A. Afshar, Microstructure, Mechanical Properties, Corrosion Behavior and Cytotoxicity of Mg-Zn-Al-Ca Alloys as Biodegradable Materials, J. Alloys. Compd., 2014, 607, p 1–10.

    Article  CAS  Google Scholar 

  31. G.L. Song and Z.Q. Xu, The Surface, Microstructure and Corrosion of Magnesium Alloy AZ31 Sheet, Electrochim. Acta., 2010, 55, p 4148–4161.

    Article  CAS  Google Scholar 

  32. J.B. Jorcin, M.E. Orazem, N. Pébère, and B. Tribollet, CPE Analysis by Local Electrochemical Impedance Spectroscopy, Electrochim. Acta., 2006, 51, p 1473–1479.

    Article  CAS  Google Scholar 

  33. M.I. Jamesh, G.S. Wu, Y. Zhao, D.R. Mckenzie, M.M.M. Bilek, and P.K. Chu, Electrochemical Corrosion Behavior of Biodegradable Mg-Y-RE and Mg-Zn-Zr Alloys in Ringer′s Solution and Simulated Body Fluid, Corros. Sci., 2015, 91, p 160–184.

    Article  CAS  Google Scholar 

  34. W.H. Ma, Y.J. Liu, W. Wang, and Y.Z. Zhang, Effects of Electrolyte Component in Simulated Body Fluid on the Corrosion Behavior and Mechanical Integrity of Magnesium, Corros. Sci., 2015, 98, p 201–210.

    Article  CAS  Google Scholar 

  35. P.J. Burke, Z. Bayindir, and G.J. Kipouros, X-ray Photoelectron Spectroscopy (XPS) Investigation of the Surface Film on Magnesium Powders, Appl. Spectrosc., 2012, 66, p 510–518.

    Article  CAS  Google Scholar 

  36. I.J.T. Jensen, A. Thøgersen, O.M. Løvvik, H. Schreuders, B. Dam, and S. Diplas, X-ray Photoelectron Spectroscopy Investigation of Magnetron Sputtered Mg-Ti-H Thin Films, Int. J. Hydrogen Energy., 2013, 38, p 10704–10715.

    Article  CAS  Google Scholar 

  37. L. Kuai, E. Kan, W. Cao, M. Huttula, S. Ollikkala, T. Ahopelto, A.P. Honkanen, S. Huotari, W.H. Wang, and B.Y. Geng, Mesoporous LaMnO3+δ Perovskite from Spray - Pyrolysis with Superior Performance for Oxygen Reduction Reaction and Zn - Air Battery, Nano Energy, 2018, 43, p 81–90.

    Article  CAS  Google Scholar 

  38. K. Huang and R.E. Logé, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater. Des., 2016, 111, p 548–574.

    Article  CAS  Google Scholar 

  39. Y.H. Sun, R.C. Wang, J. Ren, C.Q. Peng, and Z.Y. Cai, Microstructure, Texture, and Mechanical Properties of As-Extruded Mg-xLi-3Al-2Zn-0.2Zr alloys (x=5, 7, 8, 9, 11 wt.%), Mater. Sci. Eng. A, 2019, 755, p 201–210.

    Article  CAS  Google Scholar 

  40. H. Esmaeilpour, A. Zarei-Hanzaki, N. Eftekhari, H.R. Abedi, and M.R. Ghandehari Ferdowsi, Strain Induced Transformation, Dynamic Recrystallization and Texture Evolution During Hot Compression of an Extruded Mg-Gd-Y-Zn-Zr alloy, Mater. Sci. Eng. A, 2020, 778, p 139021.

    Article  CAS  Google Scholar 

  41. B.B. Dong, Z.M. Zhang, J.M. Yu, X. Che, M. Meng, and J.L. Zhang, Microstructure, Texture Evolution and Mechanical Properties of Multidirectional Forged Mg-13Gd-4Y-2Zn-0.5Zr Alloy Under Decreasing Temperature, J. Alloys. Compd., 2020, 823, p 153776.

    Article  CAS  Google Scholar 

  42. J. Luo, H. Yan, R.S. Chen, and E.H. Han, Effects of Gd Concentration on Microstructure, Texture and Tensile Properties of Mg-Zn-Gd Alloys Subjected to Large Strain Hot Rolling, Mater. Sci. Eng. A, 2014, 614, p 88–95.

    Article  CAS  Google Scholar 

  43. Y.F. Wang, F. Zhang, Y.T. Wang, Y.B. Duan, K.J. Wang, W.J. Zhang, and J. Hu, Effect of Zn Content on the Microstructure and Mechanical Properties of Mg-Gd-Y-Zr Alloys, Mater. Sci. Eng. A, 2019, 745, p 149–158.

    Article  CAS  Google Scholar 

  44. L. Xiao, G.Y. Yang, Y. Liu, S.F. Luo, and W.Q. Jie, Microstructure Evolution, Mechanical Properties and Diffusion Behaviour of Mg-6Zn-2Gd-0.5Zr Alloy During Homegenization, J. Mater. Sci. Technol., 2018, 34, p 2246–2255.

    Article  CAS  Google Scholar 

  45. G.S. Zhang, Y.Z. Meng, F.F. Yan, Z. Gao, Z.M. Yan, and Z.M. Zhang, Microstructure and Texture Evolution of Mg-RE-Zn Alloy Prepared by Repetitive Upsetting-Extrusion under Different Decreasing Temperature Degrees, J. Alloys. Compd., 2020, 815, p 152452.

    Article  CAS  Google Scholar 

  46. X.Y. Qian, Y. Zeng, B. Jiang, Q.R. Yang, Y.J. Wang, G.F. Quan, and F.S. Pan, Grain Refinement Mechanism and Improved Mechanical Properties in Mg-Sn Alloy with Trace Y Addition, J. Alloys. Compd., 2020, 820, p 153122.

    Article  CAS  Google Scholar 

  47. H.F. Sun, C.J. Li, and W.B. Fang, Evolution of Microstructure and Mechanical Properties of Mg-3.0Zn-0.2Ca-0.5Y Alloy by Extrusion at Various Temperatures, J. Mater. Process. Technol., 2016, 229, p 633–640.

    Article  CAS  Google Scholar 

  48. Q.G. Jia, W.X. Zhang, Y. Sun, C.X. Xu, J.S. Zhang, and J. Kuan, Microstructure and Mechanical Properties of As-Cast and Extruded Biomedical Mg-Zn-Y-Zr-Ca Alloy at Different Temperatures, Trans. Nonferrous Met. Soc. China, 2019, 29, p 515–525.

    Article  CAS  Google Scholar 

  49. L. Li, Y. Wang, C.C. Zhang, T. Wang, and H. Lv, Effect of Yb Concentration on Recrystallization, Texture and Tensile Properties of Extruded ZK60 Magnesium Alloys, Mater. Sci. Eng. A, 2020, 788, p 139609.

    Article  CAS  Google Scholar 

  50. Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, and S.W. Xu, The Microstructure, Texture and Mechanical Properties of Extruded Mg-5.3Zn-0.2Ca-0.5Ce (wt.%) Alloy, Mater. Sci. Eng. A, 2015, 620, p 164–171.

    Article  Google Scholar 

  51. Q.M. Peng, B.C. Ge, H. Fu, Y. Sun, Q. Zu, and J.Y. Huang, Nanoscale Coherent Interface Strengthening of Mg Alloys, Nanoscale, 2018, 10, p 18028.

    Article  CAS  Google Scholar 

  52. Z.Y. Zhao, P.K. Bai, R.G. Guan, V. Murugadoss, H. Liu, X.J. Wang, and Z.H. Guo, Microstructural Evolution and Mechanical Strengthening Mechanism of Mg-3Sn-1Mn-1La Alloy After Heat Treatments, Mater. Sci. Eng. A, 2018, 734, p 200–209.

    Article  CAS  Google Scholar 

  53. D.H. Bae, S.H. Kim, D.H. Kim, and W.T. Kim, Deformation Behavior of Mg-Zn-Y Alloys Reinforced by Icosahedral Quasicrystalline Particles, Acta. Mater., 2002, 50, p 2343–2356.

    Article  CAS  Google Scholar 

  54. H.Y. Yu, H.G. Yan, J.H. Chen, B. Su, Y. Zheng, Y.J. Shen, and Z.J. Ma, Effect of Minor Gd Addition on Microstructures and Mechanical Properties of the High Strain-Rate Rolled Mg-Zn-Zr Alloys, J. Alloys. Compd., 2014, 586, p 757–765.

    Article  CAS  Google Scholar 

  55. S.Q. Yin, W.C. Duan, W.H. Liu, L. Wu, J.M. Yu, Z.L. Zhao, M. Liu, P. Wang, J.Z. Cui, and Z.Q. Zhang, Influence of Specific Second Phases on Corrosion Behaviors of Mg-Zn-Gd-Zr Alloys, Corros. Sci., 2020, 166, p 108419.

    Article  CAS  Google Scholar 

  56. N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, C. Vogt, H. Drücker, R. Willumeit, K.U. Kainer, and F. Feyerabend, Magnesium Alloys as Implant Materials – Principles of Property Design for Mg–RE Alloys, Acta. Biomater., 2010, 6, p 1714–1725.

    Article  CAS  Google Scholar 

  57. G.R. Argade, S.K. Panigrahi, and R.S. Mishra, Effects of Grain Size on the Corrosion Resistance of Wrought Magnesium Alloys Containing Neodymium, Corros. Sci., 2012, 58, p 145–151.

    Article  CAS  Google Scholar 

  58. Y.L. Zhou, Y.C. Li, D.M. Luo, Y.F. Ding, and P. Hodgson, Microstructures, Mechanical and Corrosion Properties and Biocompatibility of as Extruded Mg-Mn-Zn-Nd Alloys for Biomedical Applications, Mater. Sci. Eng. C, 2015, 49, p 93–100.

    Article  CAS  Google Scholar 

  59. A. Srinivasan, Y. Huang, C.L. Mendis, C. Blawert, K.U. Kainer, and N. Hort, Investigation on Microstructures, Mechanical and Corrosion Properties of Mg-Gd-Zn Alloys, Mater. Sci. Eng. A, 2014, 595, p 224–234.

    Article  CAS  Google Scholar 

  60. G.L. Song and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 1999, 1, p 11–33.

    Article  CAS  Google Scholar 

  61. G.L. Song and A. Atrens, Understanding Magnesium Corrosion: A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858.

    Article  CAS  Google Scholar 

  62. F.F. Cao, K.K. Deng, K.B. Nie, J.W. Kang, and H.Y. Niu, Microstructure and Corrosion Properties of Mg-4Zn-2Gd-0 5Ca Alloy Influenced by Multidirectional Forging, J. Alloys. Compd., 2019, 770, p 1208–1220.

    Article  CAS  Google Scholar 

  63. L. Yang and E. Zhang, Biocorrosion Behavior of Magnesium Alloy in Different Simulated Fluids for Biomedical Application, Mater. Sci. Eng. C, 2009, 29, p 1691–1696.

    Article  CAS  Google Scholar 

  64. W.A. Badawy, N.H. Hilal, M. El-Rabiee, and H. Nady, Electrochemical Behavior of Mg and Some Mg Alloys in Aqueous Solutions of Different pH, Electrochim. Acta., 2010, 55, p 1880–1887.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Education Department of Henan Province (20A430010), National Natural Science Foundation of China (U1804146, 52111530068), Foreign Experts and Introduction Project of Henan Province (HNGD2020009) and Academy of Finland Grant #311934. The Center for Material Analysis, University of Oulu, Finland, is acknowledged for XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai Yao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Wang, S., Xiong, Y. et al. Enhanced Mechanical Properties and Corrosion Resistance by Minor Gd Alloying with a Hot-Extruded Mg Alloy. J. of Materi Eng and Perform 31, 9997–10009 (2022). https://doi.org/10.1007/s11665-022-07024-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07024-8

Keywords

Navigation