Skip to main content
Log in

Cavitation Erosion Behavior of Nb Strengthened Duplex Stainless Steel Surfacing Layer

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the Nb-containing duplex stainless steel (DSS) was prepared using the tungsten inert-gas welding powder surfacing method, and the solution treatment was carried out at different temperatures. A scanning electron microscope with an energy-dispersive spectrometer, universal testing machine, and ultrasonic cavitation equipment were used to study the structure, mechanical properties, and cavitation erosion (CE) resistance of DSS. The results showed that, compared with the as-welded 2209 DSS, Nb-containing DSS has better strength and lower plasticity. After heat treatment, the strength and plasticity of Nb-containing DSS were also reduced. During the ultrasonic CE test, the cumulative weight losses of the Nb-containing DSSs for 6 h were less than that of the control group (2209 DSS). However, solution treatment caused the Z phase to appear in the Nb-containing DSSs. Z phase reduced the mechanical properties of the matrix, promoted the initiation of CE cracks, and increased the cavitation weight loss of the sample after heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.A. Espitia and A. Toro, Cavitation Resistance, Microstructure and Surface Topography of Materials Used for Hydraulic Components [J], Tribol. Int., 2010, 43, p 2037–2045. https://doi.org/10.1016/j.triboint.2010.05.009

    Article  CAS  Google Scholar 

  2. Q.N. Song, Y. Tong, N. Xu, S.Y. Sun, H.L. Li, Y.F. Bao, Y.F. Jiang, Z.B. Wang and Y.X. Qiao, Synergistic Effect between Cavitation Erosion and Corrosion for Various Copper Alloys in Sulphide-Containing 3.5% NaCl Solutions, Wear, 2020, 450–451, p 203258. https://doi.org/10.1016/j.wear.2020.203258

    Article  CAS  Google Scholar 

  3. H.J. Amarendra, G.P. Chaudhari and S.K. Nath, Synergy of Cavitation and Slurry Erosion in the Slurry Pot Tester, Wear, 2012, 290–291, p 25–31. https://doi.org/10.1016/j.wear.2012.05.025

    Article  CAS  Google Scholar 

  4. K. Su, J. Wu and D. Xia, Dual Role of microparticles in Synergistic Cavitation–Particle Erosion: Modeling and experiments, Wear, 2021, 470–471, p 203633. https://doi.org/10.1016/j.wear.2021.203633

    Article  CAS  Google Scholar 

  5. T.B. Benjamin and A.T. Ellis, The Collapse of Cavitation Bubbles and the Pressures thereby Produced against Solid Boundaries. Philosophical transactions of the Royal Society of London, Ser. A: Math. Phys. Sci., 1966, 260, p 221–240. https://doi.org/10.1098/rsta.1966.0046

    Article  Google Scholar 

  6. Q.N. Song, Y. Tong, H.L. Li, H.N. Zhang, N. Xu, G.Y. Zhang, Y.F. Bao, W. Liu, Z.G. Liu and Y.X. Qiao, Corrosion and Cavitation Erosion Resistance Enhancement of Cast Ni-Al Bronze by Laser Surface Melting, J. Iron. Steel Res. Int., 2022, 29, p 359–369. https://doi.org/10.1007/s42243-021-00674-3

    Article  CAS  Google Scholar 

  7. Z. Li, J. Han, J. Lu and J. Chen, Cavitation Erosion Behavior of Hastelloy C-276 Nickel-Based Alloy, J. Alloy. Compd., 2015, 619, p 754–759. https://doi.org/10.1016/j.jallcom.2014.08.248

    Article  CAS  Google Scholar 

  8. A. Fattah and M.A. Sidkey, Cavitational Damage of Titanium in Molten Lead, Bull. Mater. Sci., 1983, 5, p 179–184. https://doi.org/10.1007/BF02744032

    Article  Google Scholar 

  9. C.G. Stephanis, J.G. Hatiris and D.E. Mourmouras, The Process (Mechanism) of Erosion of Soluble Brittle Materials Caused by Cavitation, Ultrason. Sonochem., 1997, 4, p 269–271. https://doi.org/10.1016/S1350-4177(96)00040-5

    Article  CAS  Google Scholar 

  10. W.J. Tomlinson and M.G. Talks, Erosion and Corrosion of Cast Iron under Cavitation Conditions, Tribol. Int., 1991, 24, p 67–75. https://doi.org/10.1016/0301-679X(91)90035-8

    Article  CAS  Google Scholar 

  11. K. Chiu, F. Cheng and H. Man, Evolution of Surface Roughness of some Metallic Materials in Cavitation Erosion, Ultrasonics, 2005, 43, p 713–716. https://doi.org/10.1016/j.ultras.2005.03.009

    Article  CAS  Google Scholar 

  12. X. Long, H. Yao and J. Zhao, Investigation on Mechanism of Critical Cavitating Flow in Liquid Jet Pumps under Operating Limits, Int. J. Heat Mass Transf., 2009, 52, p 2415–2420. https://doi.org/10.1016/j.ijheatmasstransfer.2008.11.018

    Article  CAS  Google Scholar 

  13. P.V. Marques and R. Trevisan, An SEM-Based Method for the Evaluation of the Cavitation Erosion Behavior of Materials, Mater. Charact., 1998, 41, p 193–200. https://doi.org/10.1016/S1044-5803(98)00038-2

    Article  CAS  Google Scholar 

  14. C. Meena and V. Uthaisangsuk, Micromechanics Based Modeling of Effect of Sigma Phase on Mechanical and Failure Behavior of Duplex Stainless Steel, Metall. and Mater. Trans. A., 2021, 52, p 1–21. https://doi.org/10.1007/s11661-021-06163-2

    Article  CAS  Google Scholar 

  15. A. Bjy and B. Ysa, Effect of Mo Addition on Aging Behavior of TRIP-Aided Duplex Stainless Steel, Mater. Charact., 2021 https://doi.org/10.1016/j.matchar.2021.110946

    Article  Google Scholar 

  16. T. Wan, N. Xiao, H. Shen and X. Yong, The Effect of Chloride Ions on the Corroded Surface Layer of 00Cr22Ni5Mo3N Duplex Stainless Steel under Cavitation, Ultraso. Sonochem., 2016, 33, p 1–9. https://doi.org/10.1016/j.ultsonch.2016.04.019

    Article  CAS  Google Scholar 

  17. K. Selvam, P. Mandal, H.S. Grewal and H.S. Arora, Ultrasonic Cavitation Erosion-Corrosion Behavior of Friction Stir Processed Stainless Steel, Ultrason. Sonochem., 2018, 44, p 331–339. https://doi.org/10.1016/j.ultsonch.2018.02.041

    Article  CAS  Google Scholar 

  18. Z. Wang, Y. Bao, W. Xu, Q. Song, K. Yang and Y. Jiang, Effect of Solution Treatment on the Cavitation Erosion Behavior of Mn-N Duplex Stainless Steel Coating, Tribol. Trans., 2021, 64, p 936–942.

    Article  CAS  Google Scholar 

  19. 何福善, 向红亮, 顾兴, 刘东. Cr32Ni7Mo3N特级双相不锈钢的空蚀行为. 北京科技大学学报. 36 (2014), 1060–1067.

  20. Z. Wang, Y. Bao, W. Xu, Q. Song, K. Yang and Y. Jiang, Effect of Solution Treatment on the Cavitation Erosion Behavior of Mn-N Duplex Stainless Steel Coating, Tribol. Trans., 2021 https://doi.org/10.1080/10402004.2021.1953656

    Article  Google Scholar 

  21. W. Ai, K.H. Lo and C.T. Kwok, Cavitation Erosion of a Spinodally Decomposed Wrought Duplex Stainless Steel in a Benign Environment, Wear, 2019 https://doi.org/10.1016/j.wear.2019.01.097

    Article  Google Scholar 

  22. I. Mitelea, L.M. Micu, I. Bordeaşu and C.M. Crăciunescu, Cavitation Erosion of Sensitized UNS S31803 Duplex Stainless Steels, J. Mater. Eng. Perform., 2016, 25, p 1939–1944. https://doi.org/10.1007/s11665-016-2045-0

    Article  CAS  Google Scholar 

  23. D.H. Mesa, C.M. Garzón and A.P. Tschiptschin, Influence of Cold-Work on the Cavitation Erosion Resistance and on the Damage Mechanisms in High-Nitrogen Austenitic Stainless Steels, Wear, 2011, 271, p 1372–1377. https://doi.org/10.1016/j.wear.2011.01.063

    Article  CAS  Google Scholar 

  24. S. Vercammen, B. Blanpain, B.C. De Cooman and P. Wollants, Cold Rolling Behaviour of an Austenitic Fe-30Mn-3Al-3Si TWIP-steel: the importance of deformation twinning, Acta Mater., 2004, 52, p 2005–2012. https://doi.org/10.1016/j.actamat.2003.12.040

    Article  CAS  Google Scholar 

  25. J.C. Li, W. Zheng and Q. Jiang, Stacking Fault Energy of Iron-Base Shape Memory Alloys, Mater. Lett., 1999, 38, p 275–277. https://doi.org/10.1016/S0167-577X(98)00172-4

    Article  CAS  Google Scholar 

  26. G.C. Kaschner, C.N. Tomé, R.J. McCabe, A. Misra, S.C. Vogel and D.W. Brown, Exploring the Dislocation/Twin Interactions in Zirconium, Mater. Sci. Eng., A, 2007, 463, p 122–127. https://doi.org/10.1016/j.msea.2006.09.115

    Article  CAS  Google Scholar 

  27. X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland and J.P. Hirth, Nanoscale-Twinning-Induced Strengthening in Austenitic Stainless Steel Thin Films, Appl. Phys. Lett., 2004, 84, p 1096–1098. https://doi.org/10.1063/1.1647690

    Article  CAS  Google Scholar 

  28. A. Karimi and J.L. Martin, Cavitation Erosion of Materials, Int. Met. Rev., 1986, 31(1), p 1–26. https://doi.org/10.1179/imtr.1986.31.1.1

    Article  CAS  Google Scholar 

  29. Z.L. Fang, The Effect of Stacking Fault Energy on the Cavitation Erosion Resistance of α-Phase Aluminum Bronzes, Wear, 2002 https://doi.org/10.1016/S0043-1648(02)00168-0

    Article  Google Scholar 

  30. H. Liu, J. Liu, B. Wu, Y. Shen, H. Yang, D. Hao and X. Su, Effect of Mn and Al Contents on Hot Ductility of High Alloy Fe-xMn-C-yAl Austenite TWIP Steels, Mater. Sci. Eng. A, 2017, 708, p 360–374. https://doi.org/10.1016/j.msea.2017.10.001

    Article  CAS  Google Scholar 

  31. M.C. Jo, H. Lee, A. Zargaran, J.H. Ryu, S.S. Sohn, N.J. Kim and S. Lee, Exceptional Combination of Ultra-High Strength and Excellent Ductility by Inevitably Generated Mn-Segregation in Austenitic Steel, Mater. Sci. Eng. A, 2018, 737, p 69–76. https://doi.org/10.1016/j.msea.2018.09.024

    Article  CAS  Google Scholar 

  32. J.K. Kim and B. Cooman, Stacking Fault Energy and Deformation Mechanisms in Fe-xMn-0.6C-yAl TWIP Steel, Mater. Sci. Eng. A, 2016 https://doi.org/10.1016/j.msea.2016.08.106

    Article  Google Scholar 

  33. I. Toor, P.J. Hyun and H.S. Kwon, Development of High Mn–N Duplex Stainless Steel for Automobile Structural Components, Corros. Sci., 2008, 50, p 404–410. https://doi.org/10.1016/j.corsci.2007.07.004

    Article  CAS  Google Scholar 

  34. Y.H. Jang, S.S. Kim and J.H. Lee, Effect of Different Mn Contents on Tensile and Corrosion Behavior of CD4MCU Cast Duplex Stainless Steels, Mater. Sci. Eng., A, 2005, 396, p 302–310. https://doi.org/10.1016/j.msea.2005.01.046

    Article  CAS  Google Scholar 

  35. L.G. Martinez, K. Imakuma and A.F. Padilha, Influence of Niobium on Stacking-Fault Energy of All-Austenite Stainless Steels, Steel Res., 1992, 63, p 221–223. https://doi.org/10.1002/srin.199200503

    Article  CAS  Google Scholar 

  36. J. Takahashi, K. Kawakami, J.I. Hamada and K. Kimura, Direct Observation of Niobium Segregation to Dislocations in Steel, Acta Mater., 2016, 107, p 415–422. https://doi.org/10.1016/j.actamat.2016.01.070

    Article  CAS  Google Scholar 

  37. H.T. Yan, H.Y. Bi, X. Li and Z. Xu, Influence of Nb on microstructure and Mechanical Properties of 0Cr11 Ferritic Stainless Steel, Iron Steel, 2009, 44, p 59–62. https://doi.org/10.1016/S1003-6326(09)60084-4

    Article  CAS  Google Scholar 

  38. P.W. Robinson and D.H. Jack, Precipitation of z-Phase in a High-Nitrogen Stainless Steel, J. Heat. Treat., 1985, 4, p 69–74. https://doi.org/10.1007/BF02835491

    Article  CAS  Google Scholar 

  39. Y. Li, Y. Liu, C. Liu, C. Li and H. Li, Mechanism for the Formation of Z-Phase in 25Cr-20Ni-Nb-N Austenitic Stainless Steel, Mater. Lett., 2018, 233, p 16–19. https://doi.org/10.1016/j.matlet.2018.08.141

    Article  CAS  Google Scholar 

  40. K.M. Rahman, V.A. Vorontsov and D. Dye, The Effect of Grain Size on the Twin Initiation Stress in a TWIP Steel, Acta Mater., 2015, 89, p 247–257. https://doi.org/10.1016/j.actamat.2015.02.008

    Article  CAS  Google Scholar 

Download references

Funding

This research was financial supported by the National Natural Science Foundation of China [Grant Number 51879089].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yefeng Bao.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Cao, C., Xie, B. et al. Cavitation Erosion Behavior of Nb Strengthened Duplex Stainless Steel Surfacing Layer. J. of Materi Eng and Perform 31, 10367–10377 (2022). https://doi.org/10.1007/s11665-022-06996-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06996-x

Keywords

Navigation