Skip to main content
Log in

Electrochemical Study of Anodized AZ31 Magnesium Alloy (Mg/MgO) Immersed under Watered Cementice Paste

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The main purpose of this research was to determine the electrochemical behavior of the anodized AZ31 magnesium alloy with different current densities immersed under watered cementice paste. These results obtained by Tafel polarization curves and electrochemical impedance spectroscopy indicated a decrease of approximately 90% in the corrosion rate for the anodized AZ31 magnesium alloy with 25 mA/cm2 when compared to a non-anodized AZ31 magnesium alloy, evidencing the protection generated by the anodization process. In addition, by means of surface SEM and SEM of the cross section, it was possible to determine the growth of the anodized layer and the morphological changes caused by the electrochemical reaction on the surface of the anodized magnesium. These results obtained in this study concluded that the anodized AZ31 magnesium alloy anodized with a current density of 25 mA/cm2 presents a set of optimum properties to be implemented in highly corrosive industry process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.-K. Lee, M.-J. Jeon, S.-S. Cha and C.-G. Park, Mechanical and Permeability Characteristics of Latex-Modified Fiber-Reinforced Roller-Compacted Rapid-Hardening-Cement Concrete for Pavement Repair, Appl. Sci., 2017, 7, p 694. https://doi.org/10.3390/app7070694

    Article  Google Scholar 

  2. H. Li, H. Xiao and J. Ou, A study on Mechanical and Pressure-Sensitive Properties of Cement Mortar with Nanophase Materials, Cem. Concr. Res., 2004, 34, p 435–438. https://doi.org/10.1016/j.cemconres.2003.08.025

    Article  Google Scholar 

  3. J.-W. Han, J.-H. Jeon and C.-G. Park, Mechanical and Permeability Characteristics of Latex-Modified Pre-Packed Pavement Repair Concrete as a Function of the Rapid-Set Binder Content, Materials (Basel)., 2015, 8, p 6728–6737. https://doi.org/10.3390/ma8105339

    Article  Google Scholar 

  4. O. Pospíchal, B. Kucharczyková, P. Misák and T. Vymazal, Freeze-Thaw Resistance of Concrete with Porous Aggregate, Procedia Eng., 2010, 2, p 521–529. https://doi.org/10.1016/j.proeng.2010.03.056

    Article  Google Scholar 

  5. S.A. Walling and J.L. Provis, Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?, Chem. Rev., 2016, 116, p 4170–4204. https://doi.org/10.1021/acs.chemrev.5b00463

    Article  Google Scholar 

  6. J.-K. Jang, H.-G. Kim, J.-H. Kim and J.-S. Ryou, The Evaluation of Damage Effects on MgO Added Concrete with Slag Cement Exposed to Calcium Chloride Deicing Salt, Materials (Basel)., 2018, 11, p 793. https://doi.org/10.3390/ma11050793

    Article  Google Scholar 

  7. X. Shi, M. Akin, T. Pan, L. Fay, Y. Liu and Z. Yang, Deicer Impacts on Pavement Materials: Introduction and Recent Developments, Open Civ. Eng. J., 2009, 3, p 16–27. https://doi.org/10.2174/1874149500903010016

    Article  Google Scholar 

  8. S. Zhao, H. Zhou, T. Zhou, Z. Zhang, P. Lin and L. Ren, The Oxidation Resistance and Ignition Temperature of AZ31 Magnesium Alloy with Additions of La2O3 and La, Corros. Sci., 2013, 67, p 75–81. https://doi.org/10.1016/j.corsci.2012.10.007

    Article  Google Scholar 

  9. A. Basheer Ahmed, Anodizing of Magnesium Alloy AZ31 by Alkaline Solution, Diyala J. Eng. Sci., 2015 https://doi.org/10.24237/djes.2015.08108

    Article  Google Scholar 

  10. L. Girón, W. Aperador, L. Tirado, F. Franco and J.C. Caicedo, Electrochemical Performance Estimation of Anodized AZ31B Magnesium Alloy as Function of Change in the Current Density, J. Mater. Eng. Perform., 2017, 26, p 3710–3718. https://doi.org/10.1007/s11665-017-2808-2

    Article  Google Scholar 

  11. I.B. Singh, M. Singh and S. Das, A Comparative Corrosion Behavior of Mg, AZ31 and AZ91 Alloys in 3.5% NaCl Solution, J. Magn. Alloy., 2015, 3, p 142–148. https://doi.org/10.1016/j.jma.2015.02.004

    Article  Google Scholar 

  12. A. Srinivasan, K.S. Shin and N. Rajendran, Dynamic Electrochemical Impedance Spectroscopy (DEIS) Studies of AZ31 Magnesium Alloy in Simulated Body Fluid Solution, RSC Adv., 2014, 4, p 27791–27795. https://doi.org/10.1039/C4RA02432J

    Article  Google Scholar 

  13. Z.L. Wang, Y.H. Yan, T. Wan and H. Yang, Poly(L-Lactic acid)/Hydroxyapatite/Collagen Composite Coatings on AZ31 Magnesium Alloy for Biomedical Application, Proc. Inst. Mech. Eng. Part H J Eng. Med., 2013, 227, p 1094–1103. https://doi.org/10.1177/0954411913493845

    Article  Google Scholar 

  14. N. Zidane, Evaluation of the Corrosion of AZ31 Magnesium Alloy Used as Sacrificial Anode for Cathodic Protection of Hot-Water Tank Storage Containing Chloride, Int. J. Electrochem. Sci., 2018, 13, p 29–44. https://doi.org/10.20964/2018.01.36

    Article  Google Scholar 

  15. Y. Cheng, T. Qin, H. Wang and Z. Zhang, Comparison of Corrosion Behaviors of AZ31, AZ91, AM60 and ZK60 Magnesium Alloys, Trans. Nonferrous Met. Soc. China., 2009, 19, p 517–524. https://doi.org/10.1016/S1003-6326(08)60305-2

    Article  Google Scholar 

  16. C.H. Ortiz, J.C. Caicedo and W. Aperador, Corrosion Properties of Heterostructured [8YSZ/Al2O3]N Coatings as a Function of the Bilayer Number, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-021-06300-3

    Article  Google Scholar 

  17. C.H. Ortiz, H.D. Colorado, W. Aperador and A. Jurado, Influence of the Number of Bilayers on the Mechanical and Tribological Properties in [TiN/TiCrN]n Multilayer Coatings Deposited by Magnetron Sputtering, Tribol. Ind., 2019, 41, p 330–343. https://doi.org/10.24874/ti.2019.41.03.03

    Article  Google Scholar 

  18. S.A. Salman, R. Mori, R. Ichino and M. Okido, Effect of Anodizing Potential on the Surface Morphology and Corrosion Property of AZ31 Magnesium Alloy, Mater. Trans., 2010, 51, p 1109–1113. https://doi.org/10.2320/matertrans.M2009380

    Article  Google Scholar 

  19. F.A. Bonilla, A. Berkani, Y. Liu, P. Skeldon, G.E. Thompson, H. Habazaki, K. Shimizu, C. John and K. Stevens, Formation of Anodic Films on Magnesium Alloys in an Alkaline Phosphate Electrolyte, J. Electrochem. Soc., 2002, 149, p B4. https://doi.org/10.1149/1.1424896

    Article  Google Scholar 

  20. A. Pawlak, M. Rosienkiewicz and E. Chlebus, Design of Experiments Approach in AZ31 Powder Selective Laser Melting Process Optimization, Arch. Civ. Mech. Eng., 2017, 17, p 9–18. https://doi.org/10.1016/j.acme.2016.07.007

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Tribology, Polymers, Powder Metallurgy and Solid Waste Transformation (TPMR) research group of the Universidad del Valle; And the “Universidad Militar Nueva Granda” through the INV_ING 3123 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Ortiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, C.H., Aperador, W. & Caicedo, J.C. Electrochemical Study of Anodized AZ31 Magnesium Alloy (Mg/MgO) Immersed under Watered Cementice Paste. J. of Materi Eng and Perform 31, 8896–8905 (2022). https://doi.org/10.1007/s11665-022-06931-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06931-0

Keywords

Navigation