Skip to main content

Advertisement

Log in

High Tensile Properties and Low Surface Roughness of Gr/Cu Foils

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Cu foil with low surface roughness and high tensile properties is a challenge in the field of electronic materials. In this research, the graphene/copper foils (GrCFs) have been fabricated by direct current electrodeposition. The changes in the structure and properties of GrCFs caused by mechanical agitating rate were investigated. XRD, SEM, laser scanning confocal microscopy and tensile equipment were employed to examine surface quality, surface roughness, microstructure and tensile property of GrCFs. The results indicated that the electrodeposition particles became denser and larger, and the deposition rate increased with increasing the mechanical agitating rate. However, the surface roughness (Ra) of the GrCFs decreased from 3.49 ± 0.06 to 0.90 ± 0.06 μm and then increased to 1.59 ± 0.05 μm. When the CuSO4·5H2O concentration was 70 g/L and the mechanical agitating rate was 200 rpm, the minimum surface roughness of 0.90 ± 0.06 μm and the maximum tensile strength of 558 ± 29 MPa were simultaneously obtained. The enhancement of tensile strength of GrCFs was primarily ascribed to the refinement of the crystalline size and the Gr reinforcement. The surface roughness of GrCFs was dominated by an appropriate agitating rate and Cu2+ concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Hidalgo-Manrique, X. Lei, R. Xu, M. Zhou, I.A. Kinloch and R.J. Young, Copper/Graphene Composites: A Review, J. Mater. Sci., 2019, 54(19), p 12236–12289.

    Article  Google Scholar 

  2. G. Song, Q. Wang, L. Sun, S. Li, Y. Sun, Q. Fu and C. Pan, One-Step Synthesis of Sandwich-Type Cu/Graphene/Cu Ultrathin Foil with Enhanced Property Via Electrochemical Route, Mater. Design, 2020, 191, p 108629.

    Article  Google Scholar 

  3. R.S. Timsit, High Speed Electronic Connectors: A Review of Electrical Contact Properties, IEICE Trans. Electron., 2005, 88, p 1532–1545.

    Article  Google Scholar 

  4. C.G. Lee, Q.Y. Li, W. Kalb, X.Z. Liu, H. Berger, R.W. Carpick and J. Hone, Frictional Characteristics of Atomically Thin Sheets, Science, 2010, 328, p p76-80.

    Article  Google Scholar 

  5. R.F. Service, Carbon Sheets an Atom Thick Give Rise to Graphene Dreams, Science, 2009, 324, p p875-877.

    Article  Google Scholar 

  6. D. Berman, A. Erdemir and A.V. Sumant, Graphene: A New Emerging Lubricant, Mater. Today, 2014, 17, p p31-42.

    Article  Google Scholar 

  7. C.L.P. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao and G. Sundararajan, A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness, Sci. Rep., 2014, 4, p 183–191.

    Google Scholar 

  8. M. Diba, D.W.H. Fam, A.R. Boccaccini and M.S.P. Shaffer, Electrophoretic Deposition of Graphene-Related Materials: A Review of the Fundamentals, Prog. Mater Sci., 2016, 82, p p83-117.

    Article  Google Scholar 

  9. K. Jagannadham, Volume Fraction of Graphene Platelets in Copper-Graphene Composites, Metall. Mater. Trans. A, 2013, 44, p p552-559.

    Article  Google Scholar 

  10. G. Huang, H. Wang, P. Cheng, H. Wang, B. Sun, S. Sun, C. Zhang, M. Chen and G. Ding, Preparation and Characterization of the Graphene-Cu Composite Film by Electrodeposition Process, Microelectron. Eng., 2016, 157, p p7-12.

    Article  Google Scholar 

  11. R.T. Mathew, S. Singam, P. Kollu, S. Bohm and M.J.N.V. Prasad, Achieving Exceptional Tensile Strength in Electrodeposited Copper Through Grain Refinement and Reinforcement Effect by Co-Deposition of Few Layered Graphene, J. Alloys Compd., 2020, 840, p 155725.

    Article  Google Scholar 

  12. C.T.J. Low, R.G.A. Wills and F.C. Walsh, Electrodeposition of Composite Coatings Containing Nanoparticles in a Metal Deposit, Surf. Coat. Technol., 2006, 201, p 371–383.

    Article  Google Scholar 

  13. K. Zarebska and M. Skompska, Electrodeposition of CdS from Acidic Aqueous Thiosulfate Solution-Invesitigation of the Mechanism by Electrochemical Quartz Microbalance Technique, Electrochim. Acta, 2011, 56, p p5731-5739.

    Article  Google Scholar 

  14. D. Grujicic and B. Pesic, Electrodeposition of Copper: The Nucleation Mechanisms, Electrochim. Acta, 2002, 47, p p2901-2912.

    Article  Google Scholar 

  15. J.L. Rosa, A. Robin, M.B. Silva, C.A. Baldan and M.P. Peres, Electrodeposition of Copper on Titanium Wires: Taguchi Experimental Design Approach, J. Mater. Process. Technol., 2008, 209, p p1181-1188.

    Article  Google Scholar 

  16. N.D. Nikolić, K.I. Popov and L.J. Pavlović, Morphologies of Copper Deposits Obtained by the Electrodeposition at High Overpotentials, Surf. Coat. Technol., 2006, 201, p p560-566.

    Article  Google Scholar 

  17. H. Cesiulis, A. Baltutiene, M.L. Donten and Z. Stojek, Increase Inrate of Electrodeposition and in Ni (II) Concentration in the Bath as a Way to Control Grain Size of Amorphous/Nanocrystalline Ni-W Alloys, J. Solid State Electrochem., 2002, 6, p p237-244.

    Article  Google Scholar 

  18. M. Saraji, B. Farajmand and E.H. Bafrouei, Development of Electrodeposited Nanostructural Poly (O-Aminophenol) Coating as a solid Phase Microextraction Fiber For Determination of Bisphenol A, Anal. Methods Environ. Chem. J., 2021, 4, p p34-46.

    Article  Google Scholar 

  19. K.R. Mamaghani and S.M. Naghib, The Effect of Stirring Rate on Electrodeposition of Nanocrystalline Nickel Coatings and their Corrosion Behaviors and Mechanical Characteristics, Int. J. Electrochem. Sci., 2017, 12, p 5023–5035.

    Article  Google Scholar 

  20. H.Y.R. Atapattu, D.S.M. De Silva, K.A.S. Pathiratne and I.M. Dharmadasa, Effect of Stirring Rate of Electrolyte on Properties of Electrodeposited CdS Layers, J. Mater. Sci. Mater. Electron., 2016, 27, p p5415-5421.

    Article  Google Scholar 

  21. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth and A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 2006, 97, p 187401.

    Article  Google Scholar 

  22. S.S. Nanda, M.J. Kim, K.S. Yeom, S.S.A. An, H. Ju and D.K. Yi, Raman Spectrum of Graphene with its Versatile Future Perspectives, TrAC Trends Anal. Chem., 2016, 80, p p125-131.

    Article  Google Scholar 

  23. G.N. Ten, A.Y. Gerasimenko, M.S. Savelyev, A.V. Kuksin, P.N. Vasilevsky, E.P. Kitsyuk and V.I. Baranov, Influence of Edge Defects on Raman Spectra of Graphene, Lett. Mater., 2020, 10, p p89-93.

    Article  Google Scholar 

  24. G. Dini, R. Ueji, A. Najafizadeh and S.M. Monir-Vaghefi, Flow Stress Analysis of TWIP Steel Via the XRD Measurement of Dislocation Density, Mater. Sci. Eng. A, 2010, 527, p p2759-2763.

    Article  Google Scholar 

  25. J. Jiang, T.B. Britton and A.J. Wilkinson, Evolution of Dislocation Density Distributions in Copper During Tensile Deformation, Acta Mater., 2013, 61, p p7227-7239.

    Article  Google Scholar 

  26. G. Niu, Q.B. Tang, H.S. Zurob, H.B. Wu, L.X. Xu and N. Gong, Strong and Ductile Steel via High Dislocation Density and Heterogeneous Nano/Ultrafine Grains, Mater. Sci. Eng. A, 2019, 759, p p1-10.

    Article  Google Scholar 

  27. Q.S. Pan, H.F. Zhou, Q.H. Lu, H.J. Gao and L. Lu, History-Independent Cyclic Response of Nanotwinned Metals, Nature, 2017, 551, p p214-217.

    Article  Google Scholar 

  28. Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon and S.M. Han, Strengthening Effect of Single-Atomic-Layer Graphene in Metal–Graphene Nanolayered Composites, Nat. Commun., 2013, 4, p 2114.

    Article  Google Scholar 

  29. N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scripta Mater., 2004, 51, p 801–806.

    Article  Google Scholar 

  30. F.C. Walsh, S.C. Wang and N. Zhou, The Electrodeposition of Composite Coatings: Diversity, Applications and Challenges, Curr. Opin. Electrochem., 2020, 20, p p8-19.

    Article  Google Scholar 

  31. L. Liu and M. Barigou, Numerical Modelling of Velocity Field and Phase Distribution in Dense Monodisperse Solid–Liquid Suspensions Under Different Regimes of Agitation: CFD and PEPT Experiments, Chem. Eng. Sci., 2013, 101, p p837-850.

    Article  Google Scholar 

  32. M. Baiteche, S.M. Taghavi, D. Ziegler and M. Fafard, LES turbulence modeling approach for molten aluminium and electrolyte flow in aluminum electrolysis cell, Light Metals. Springer, Cham, 2017, p 679–686

    Google Scholar 

  33. E.S.F. Cardoso, G.V. Fortunato and G. Maia, Use of Rotating Ring-Disk Electrodes to Investigate Graphene Nanoribbon Loadings for the Oxygen Reduction Reaction in Alkaline Medium, ChemElectroChem, 2018, 5, p p1691-1701.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), International Chinese Education Innovation Project of Ministry of Education of P. R. China (21YH011CX5), Jiangsu International Science and Technology Project (BZ2021078), and Changzhou Science and Technology Project (CZ20210003, CJ20210114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wei or Igor V. Alexandrov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, K.X., Zheng, X.C., Wei, W. et al. High Tensile Properties and Low Surface Roughness of Gr/Cu Foils. J. of Materi Eng and Perform 31, 9362–9369 (2022). https://doi.org/10.1007/s11665-022-06914-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06914-1

Keywords

Navigation