Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of In Situ TiB2/2024 Composites Fabricated by Powder Metallurgy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, a uniform distribution of nanosized TiB2 particles in the metal matrix was achieved by powder metallurgy using the composite powders with pre-embedded particles. The composite powders were consolidated into compacts via spark plasma sintering without additional treatment such as mechanical milling or mixing. The concentrated shear stress around the uniformly distributed TiB2 particles with size similar to the width of the elongated grains during hot extrusion leads into grain fragmentation and refinement. The T4-treated TiB2/2024 composites had a better combination of yield strength of 385 MPa, ultimate tensile strength of 568 MPa and uniform elongation of 14.6% compared to the Al-Cu-Mg alloys and Al-Cu-Mg based composites in the published work. The longer uniform elongation of the composites in the present work was analyzed in respects of dislocation accumulation rate k1 and dislocation recovery rate k2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Yi, N. Ma, Y. Zhang, X. Li, and H. Wang, Effective Elastic Moduli of Al–Si Composites Reinforced In Situ with TiB2 Particles, Scr. Mater., 2006, 54(6), p 1093–1097.

    Google Scholar 

  2. M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, and H. Wang, Mechanical Properties of In-Situ TiB2/A356 Composites, Mater. Sci. Eng. A, 2014, 590, p 246–254.

    Google Scholar 

  3. I. Dinaharan and N. Murugan, Effect of Friction Stir Welding on Microstructure, Mechanical and Wear Properties of AA6061/ZrB2 In Situ Cast Composites, Mater. Sci. Eng. A, 2012, 543, p 257–266.

    Google Scholar 

  4. Y. Zhang, N. Ma, H. Wang, Y. Le, and S. Li, Effect of Ti on the Damping Behavior of Aluminum Composite Reinforced with In Situ TiB2 Particulate, Scr. Mater., 2005, 53(10), p 1171–1174.

    Google Scholar 

  5. Y. Ma, Z. Chen, M. Wang, D. Chen, N. Ma, and H. Wang, High Cycle Fatigue Behavior of the In-Situ TiB2/7050 Composite, Mater. Sci. Eng. A, 2015, 640, p 350–356.

    Google Scholar 

  6. G. Chen, X. Song, N. Hu, H. Wang, and Y. Tian, Effect of Initial Ti Powders Size on the Microstructures and Mechanical Properties of Al3Ti/2024 Al Composites Prepared by Ultrasonic Assisted In-Situ Casting, J. Alloys Compd., 2017, 694, p 539–548.

    Google Scholar 

  7. L. Ceschini, G. Minak, A. Morri, and F. Tarterini, Forging of the AA6061/23vol.%Al2O3p Composite: Effects on Microstructure and Tensile Properties, Mater. Sci. Eng. A, 2009, 513, p 176–184.

    Google Scholar 

  8. W.L. Zhang, M.Y. Gu, D.Z. Wang, and Z.K. Yao, Rolling and Annealing Textures of a SiCw/Al Composite, Mater. Lett., 2004, 58(27), p 3414–3418.

    Google Scholar 

  9. L. Ceschini, I. Boromei, G. Minak, A. Morri, and F. Tarterini, Microstructure, Tensile and Fatigue Properties of AA6061/20vol%Al2O3p Friction Stir Welded Joints, Compos. A, 2007, 38(4), p 1200–1210.

    Google Scholar 

  10. T. Kobayashi, Metal matrix composites, Strength and Toughness of Materials. T. Kobayashi Ed., Springer Japan, Tokyo, 2004, p 163–187

    Google Scholar 

  11. L. Babout, E. Maire, and R. Fougères, Damage Initiation in Model Metallic Materials: X-Ray Tomography and Modelling, Acta Mater., 2004, 52(8), p 2475–2487.

    Google Scholar 

  12. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility, Nat. Mater., 2013, 12(4), p 344–350.

    Google Scholar 

  13. J. Liu, Z. Chen, F.G. Zhang, G. Ji, M.L. Wang, Y. Ma, V. Ji, S.Y. Zhong, Y. Wu, and H.W. Wang, Simultaneously Increasing Strength and Ductility of Nanoparticles Reinforced Al Composites via Accumulative Orthogonal Extrusion Process, Mater. Res. Lett., 2018, 6(8), p 406–412.

    Google Scholar 

  14. C.F. Feng and L. Froyen, Microstructures of In Situ Al/TiB2 MMCs Prepared by a Casting Route, J. Mater. Sci., 2000, 35(4), p 837–850.

    Google Scholar 

  15. L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, and X.-C. Li, Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles, Nature, 2015, 528(7583), p 539–543.

    Google Scholar 

  16. Z. Chen, J. Li, A. Borbely, G. Ji, S.Y. Zhong, Y. Wu, M.L. Wang, and H.W. Wang, The Effects of Nanosized Particles on Microstructural Evolution of an In-Situ TiB2/6063Al Composite Produced by Friction Stir Processing, Mater. Des., 2015, 88, p 999–1007.

    Google Scholar 

  17. S.M. Ma, P. Zhang, G. Ji, Z. Chen, G.A. Sun, S.Y. Zhong, V. Ji, and H.W. Wang, Microstructure and Mechanical Properties of Friction Stir Processed Al–Mg–Si Alloys Dispersion-Strengthened by Nanosized TiB2 Particles, J. Alloys Compd., 2014, 616, p 128–136.

    Google Scholar 

  18. X. Ju, F. Zhang, Z. Chen, G. Ji, M. Wang, V. Wu, S. Zhong, and H.W. Wang, Microstructure of Multi-Pass Friction-Stir-Processed Al-Zn-Mg-Cu Alloys Reinforced by Nano-Sized TiB2 Particles and the Effect of T6 Heat Treatment, Metals, 2017, 7(12), p 530.

    Google Scholar 

  19. J. Liu, Z. Chen, F.G. Zhang, J. Gang, M. Yu, M.L. Wang, S.Y. Zhong, J. Li, H. Wang, and H.W. Wang, Improved Structural Homogeneity and Mechanical Properties of Nanoparticles Reinforced Al Composites After Orthogonal Thermomechanical Processes, J. Alloys Compd., 2018, 767, p 293–301.

    Google Scholar 

  20. F.M. Heim, Y. Zhang, and X. Li, Uniting Strength and Toughness of Al Matrix Composites with Coordinated Al3Ni and Al3Ti Reinforcements, Adv. Eng. Mater., 2018, 20, p 1700605.

    Google Scholar 

  21. S.C. Tjong, Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties, Adv. Eng. Mater., 2007, 9(8), p 639–652.

    Google Scholar 

  22. C. Suryanarayana and N. Al-Aqeeli, Mechanically Alloyed Nanocomposites, Prog. Mater. Sci., 2013, 58(4), p 383–502.

    Google Scholar 

  23. H.M. John, D.Y. Brennan, M.H. Jacob, A.M. Justin, A.S. Tobias, and M.P. Tresa, 3D Printing of High-Strength Aluminium Alloys, Nature, 2017, 549, p 365–369.

    Google Scholar 

  24. C.D. Wu, K.K. Ma, J.L. Wu, P. Fang, G.Q. Luo, F. Chen, Q. Shen, L.M. Zhang, J.M. Schoenung, and E.J. Lavernia, Influence of Particle Size and Spatial Distribution of B4C Reinforcement on the Microstructure and Mechanical Behavior of Precipitation Strengthened Al Alloy Matrix Composites, Mater. Sci. Eng. A, 2016, 675, p 421–430.

    Google Scholar 

  25. D.B. Witkin and E.J. Lavernia, Synthesis and Mechanical Behavior of Nanostructured Materials via Cryomilling, Prog. Mater. Sci., 2006, 51(1), p 1–60.

    Google Scholar 

  26. H. Yang, E.J. Lavernia, and J.M. Schoenung, Novel Fabrication of Bulk Al with Gradient Grain Size Distributions via Powder Metallurgy, Philos. Mag. Lett., 2015, 95, p 177–186.

    Google Scholar 

  27. M. Chen, X. Li, G. Ji, Y. Wu, Z. Chen, W. Baekelant, K. Vanmeensel, H. Wang, and J.-P. Kruth, Novel Composite Powders with Uniform TiB2 Nano-Particle Distribution for 3D Printing, Appl. Sci. 7(3) (2017)

  28. X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, and J.P. Kruth, Selective Laser Melting of Nano-TiB2 Decorated AlSi10Mg Alloy with High Fracture Strength and Ductility, Acta Mater., 2017, 129, p 183–193.

    Google Scholar 

  29. Q. Yang, Y. Ma, Z. Chen, G. Ji, M.L. Wang, S.Y. Zhong, Y. Wu, V. Ji, and H.W. Wang, A New Powder Metallurgy Routine to Fabricate TiB2/Al–Zn–Mg–Cu Nanocomposites based on Composite Powders with Pre-Embedded Nanoparticles, Materialia, 2019, 8, p 100458.

    Google Scholar 

  30. Y. Tang, Z. Chen, A. Borbely, G. Ji, S.Y. Zhong, D. Schryvers, V. Ji, and H.W. Wang, Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy Mater, Charact, 2015, 102, p 131–136.

    Google Scholar 

  31. Q. Yang, Y.T. Liu, J. Liu, L. Wang, Z. Chen, M.L. Wang, S.Y. Zhong, Y. Wu, and H.W. Wang, Microstructure Evolution of the Rapidly Solidified Alloy Powders and Composite Powders, Mater. Des., 2019, 182, p 108045.

    Google Scholar 

  32. B. Derby, The Dependece of Grain Size on Stress During Dynamic Recrystallisation, Acta Metall. Mater., 1990, 39, p 955–962.

    Google Scholar 

  33. R.E.D. Mann, R.L. Hexemer, I.W. Donaldson, and D.P. Bishop, Hot Deformation of an Al–Cu–Mg Powder Metallurgy Alloy, Mater. Sci. Eng. A, 2011, 528(16), p 5476–5483.

    Google Scholar 

  34. L. Hu, Z. Liu, and E. Wang, Microstructure and Mechanical Properties of 2024 Aluminum Alloy Consolidated from Rapidly Solidified Alloy Powders, Mater. Sci. Eng. A, 2002, 323(1), p 213–217.

    Google Scholar 

  35. Y. Lian, Z. Yang, J. Yang, and C. Mao, Processing and Mechanical Properties of 2024 Aluminum Matrix Composites Containing Tungsten and Tantalum Prepared by PM, Rare Met., 2006, 25(6), p 136–140.

    Google Scholar 

  36. S.E. Shin, H.J. Choi, J.H. Shin, and D.H. Bae, Strengthening Behavior of Few-Layered Graphene/Aluminum Composites, Carbon, 2015, 82, p 143–151.

    Google Scholar 

  37. Y.S. Su, Q.B. Ouyang, W.L. Zhang, Z.Q. Li, Q. Guo, G.L. Fan, and D. Zhang, Composite Structure Modeling and Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Mater. Sci. Eng. A, 2014, 597, p 359–369.

    Google Scholar 

  38. L. Wang, F. Qiu, J.Y. Liu, H.Y. Wang, J.G. Wang, L. Zhu, and Q.C. Jiang, Microstructure and Tensile Properties of In Situ Synthesized Nano-Sized TiCx/2009Al Composites, Mater. Des., 2015, 79, p 68–72.

    Google Scholar 

  39. M. Alizadeh, Comparison of Nanostructured Al/B4C Composite Produced by ARB and Al/B4C Composite Produced by RRB Process, Mater. Sci. Eng. A, 2010, 528, p 578–582.

    Google Scholar 

  40. H. Wei, Z.Q. Li, D.B. Xiong, Z.Q. Tan, G.L. Fan, Z. Qin, and D. Zhang, Towards Strong and Stiff Carbon Nanotube-Reinforced High-Strength Aluminum Alloy Composites Through a Microlaminated Architecture Design, Scr. Mater., 2014, 75, p 30–33.

    Google Scholar 

  41. J. Lin, Y. Hanry, K.Y. Joshua, M. Xuan, T. Troy, E.J. Lavernia, and J.M. Schoenung, Toughening of Aluminum Matrix Nanocomposites via Spatial Arrays of Boron Carbide Spherical Nanoparticles, Acta Mater., 2016, 103, p 128–140.

    Google Scholar 

  42. O.N. Senkov, M.R. Shagiev, S.V. Senkova, and D.B. Miracle, Precipitation of Al3(Sc, Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr Alloy During Conventional Solution Heat Treatment and its Effect on Tensile Properties, Acta Mater., 2008, 56, p 3723–3738.

    Google Scholar 

  43. X.Z. Kai, Z.Q. Li, G.L. Fan, Q. Guo, Z.Q. Tan, W.L. Zhang, Y.S. Su, W.J. Lu, W.J. Moon, and D. Zhang, Strong and Ductile Particulate Reinforced Ultrafine-Grained Metallic Composites Fabricated by Flake Powder Metallurgy, Scr. Mater., 2013, 68, p 555–558.

    Google Scholar 

  44. H.N. Dong, I.C. Seung, K.L. Byung, M.P. Hoon, S.H. Do, and H. Hong, Soon Synergistic Strengthening by Load Transfer Mechanism and Grain Refinement of CNT/Al–Cu Composites, Carbon, 2012, 50, p 2417–2423.

    Google Scholar 

  45. M. Li, K.K. Ma, L. Jiang, H. Yang, E.J. Lavernia, L.M. Zhang, and J.M. Schoenung, Synthesis and Mechanical Behavior of Nanostructured Al 5083/n-TiB2 Metal Matrix Composites, Mater. Sci. Eng. A, 2016, 656, p 241–248.

    Google Scholar 

  46. T. Gladman, Precipitation Hardening in Metals, Mater. Sci. Technol., 2013, 15(1), p 30–36.

    Google Scholar 

  47. J.C. Fisher, E.W. Hart, and R.H. Pry, The Hardening of Metal Crystals by Precipitate Particles, Acta Metall., 1953, 1, p 336–339.

    Google Scholar 

  48. Y. Zhang, D. Juul Jensen, Y. Zhang, F. Lin, Z. Zhang, and Q. Liu, Three-Dimensional Investigation of Recrystallization Nucleation in a Particle-Containing Al Alloy, Scr. Mater., 2012, 67(4), p 320–323.

    Google Scholar 

  49. T.A. Bennett, R.H. Petrov, L.A.I. Kestens, L.Z. Zhuang, and P. de Smet, The Effect of Particle-Stimulated Nucleation on Texture Banding in an Aluminium Alloy, Scr. Mater., 2010, 63(5), p 461–464.

    Google Scholar 

  50. K. Huang, K. Marthinsen, Q. Zhao, and R.E. Logé, The Double-Edge Effect of Second-Phase Particles on the Recrystallization Behaviour and Associated Mechanical Properties of Metallic Materials, Prog. Mater Sci., 2018, 92, p 284–359.

    Google Scholar 

  51. J.D. Robson, D.T. Henry, and B. Davis, Particle Effects on Recrystallization in Magnesium–Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57(9), p 2739–2747.

    Google Scholar 

  52. T. Mayama, M. Noda, R. Chiba, and M. Kuroda, Crystal Plasticity Analysis of Texture Development in Magnesium Alloy During Extrusion, Int. J. Plast, 2011, 27(12), p 1916–1935.

    Google Scholar 

  53. W. Wu, Y. Wang, J. Wang, and S. Wei, Effect of Electrical Pulse on the Precipitates and Material Strength of 2024 Aluminum Alloy, Mater. Sci. Eng. A, 2014, 608, p 190–198.

    Google Scholar 

  54. D.R. Ni, D.L. Chen, D. Wang, B.L. Xiao, and Z.Y. Ma, Tensile properties and Strain-Hardening Behaviour of Friction Stir Welded SiCp/AA2009 Composite Joints, Mater. Sci. Eng. A, 2014, 608, p 1–10.

    Google Scholar 

  55. H. Mecking and U.F. Kocks, Kinetics of Flow and Strain Hardening, Acta Metall., 1981, 29, p 1865–1875.

    Google Scholar 

  56. I.S. Yasnikov, Y. Estrin, and A. Vinogradov, What Governs Ductility of Ultrafine-Grained Metals? A Microstructure Based Approach to Necking Instability, Acta Mater., 2017, 141, p 18–28.

    Google Scholar 

  57. C. Mondal, A.K. Singh, A.K. Mukhopadhyay, and K. Chattopadhyay, Tensile Flow and Work Hardening Behavior of Hot Cross-Rolled AA7010 Aluminum Alloy Sheets, Mater. Sci. Eng. A, 2013, 577, p 87–100.

    Google Scholar 

  58. M.F. Ashby, The Deformation of Plastically Non-Homogeneous Materials, Phil. Mag., 1970, 21(170), p 399–424.

    Google Scholar 

Download references

Acknowledgment

This work is financially supported by the Natural Science Foundation of China [Nos. 51971137, 11875192, U1930101].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengguo Zhang or Zhe Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Zhang, F., Yang, Q. et al. Microstructure and Mechanical Properties of In Situ TiB2/2024 Composites Fabricated by Powder Metallurgy. J. of Materi Eng and Perform 31, 8775–8783 (2022). https://doi.org/10.1007/s11665-022-06900-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06900-7

Keywords

Navigation