Skip to main content

Advertisement

Log in

Microstructure and Properties of Vacuum-Brazed Joints of 3D-Structured Ni718 High-Temperature Alloy Prepared by Selective Laser Melting

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The 3D-structured IN718 surfaces have been designed and printed by SLM for vacuum brazing with BNi2 filler. The effect of brazing temperature and time on microstructure and mechanical property of structured IN718 joints is investigated. The results reveal that the joint consists of ISZ, ASZ, and DAZ, with ISZ consisting of γ solid solution; ASZ consisting of Cr2B, Ni3B Ni3Si, and Ni6Si2B and the intermetallic compounds are concentrated in the crest and trough; DAZ has a large amount of (Cr, Nb, Mo)-rich borides. The different degrees of enrichment of the elements affect the changes of the microstructure and morphology in DAZ. With the increase in brazing temperature, the ASZ gradually becomes smaller, and more Cr2B is observed. At 1110 °C, the reduced isothermal solidification rate leads to the re-formation of intermetallic compounds in the narrower gap zone. With the increase in holding time, the intermetallic compounds gradually decrease to disappear, but in the narrower gap zone, Kirkendall holes appeared. The highest shear strength of the joint is 676.5 MPa along the groove direction and 624.4 MPa in the vertical groove structure direction at 1080 °C/40 min, 27.5 to 38.1% improvement in strength compared with flat joints. The fracture mechanism is mixed with brittle and ductile fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.B. Henderson, D. Arrell, R. Larsson, M. Heobel and G. Marchant, Nickel Based Superalloy Welding Practices for Industrial Gas Turbine Applications, Sci. Technol. Weld. Join., 2004, 9(1), p 13–21. https://doi.org/10.1179/136217104225017099

    Article  CAS  Google Scholar 

  2. S. Sanchez, P. Smith, Z. Xu, G. Gaspard, C.J. Hyde, W.W. Wits, I.A. Ashcroft, H. Chen and A.T. Clare, Powder Bed Fusion of Nickel-Based Superalloys: A Review, Int. J. Mach. Tools Manuf., 2021, 165, p 103729.

    Article  Google Scholar 

  3. S. Shao, M.M. Khonsari, S. Guo, W.J. Meng and N. Li, Overview: Additive Manufacturing Enabled Accelerated Design of Ni-Based Alloys for Improved Fatigue Life, Additive Manufacturing, 2019, 29, p 100779.

    Article  CAS  Google Scholar 

  4. S. Rayapati, Gas Turbine Blade Failure Scenario Due to Thermal Loads in Case of Nickel Based Super Alloys, Mater. Today Proc., 2021, 46, p 8119–26.

    Article  CAS  Google Scholar 

  5. G. Zhao, S. Tian, S. Zhang, N. Tian and L. Liu, Deformation and Damage Features of a Re/Ru-Containing Single Crystal Nickel Base Superalloy during Creep at Elevated Temperature, Progress. Natural Sci.: Mater. Int., 2019, 29, p 210–216.

    Article  CAS  Google Scholar 

  6. M. Bhuvanesh Kumar and P. Sathiya, Methods and Materials for Additive Manufacturing: A Critical Review on Advancements and Challenges, Thin-Walled Struct., 2021, 159, p 107228. https://doi.org/10.1016/j.tws.2020.107228

    Article  Google Scholar 

  7. D. Zhang, P. Zhang, Z. Liu, Z. Feng, C. Wang and Y. Guo, Thermofluid Field of Molten Pool and Its Effects during Selective Laser Melting (SLM) of Inconel 718 Alloy, Addit. Manuf., 2018, 21(100), p 567–578.

    Google Scholar 

  8. I. Koutiri, E. Pessard, P. Peyre, O. Amlou and T. De Terris, Influence of SLM Process Parameters on the Surface Finish, Porosity Rate and Fatigue Behavior of as-Built Inconel 625 Parts, J. Mater. Process. Technol., 2018, 255, p 536–546. https://doi.org/10.1016/j.jmatprotec.2017.12.043

    Article  CAS  Google Scholar 

  9. K.G. Prashanth, R. Damodaram, S. Scudino, Z. Wang, K. Prasad Rao and J. Eckert, Friction Welding of Al–12Si Parts Produced by Selective Laser Melting, Mater. Des., 2014, 57, p 632–637.

    Article  CAS  Google Scholar 

  10. H. Yu, F. Li, J. Yang, J. Shao, Z. Wang and X. Zeng, Investigation on Laser Welding of Selective Laser Melted Ti-6Al-4V Parts: Weldability, Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2018, 712, p 20–27.

    Article  CAS  Google Scholar 

  11. D. Bridges, C. Ma, Z. Palmer, S. Wang, Z. Feng and A. Hu, Laser Brazing of Inconel® 718 Using Ag and Cu-Ag Nanopastes as Brazing Materials, J. Mater. Process. Technol., 2017, 249, p 313–324. https://doi.org/10.1016/j.jmatprotec.2017.06.010

    Article  CAS  Google Scholar 

  12. T. Zaharinie, F. Yusof, M. Hamdi, T. Ariga and R. Moshwan, Effect of Brazing Temperature on the Shear Strength of Inconel 600 Joint, Int. J. Adv. Manuf. Technol., 2014, 73(5), p 1133–1140. https://doi.org/10.1007/S00170-014-5900-X

    Article  Google Scholar 

  13. Y.K. Yu, D.W. Liaw and R.K. Shiue, Infrared Brazing Inconel 601 and 422 Stainless Steel Using the 70Au-22Ni-8Pd Braze Alloy, J. Mater. Sci., 2005, 40(13), p 3445–3452. https://doi.org/10.1007/S10853-005-0446-9

    Article  CAS  Google Scholar 

  14. L.X. Zhang, Z. Sun, Q. Xue, M. Lei and X.Y. Tian, Transient Liquid Phase Bonding of IC10 Single Crystal with GH3039 Superalloy Using BNi2 Interlayer: Microstructure and Mechanical Properties, Mater. Des., 2016, 90, p 949–957. https://doi.org/10.1016/j.matdes.2015.11.041

    Article  CAS  Google Scholar 

  15. D. Liu, Y. Song, B. Shi, Q. Zhang, X. Song, H. Niu and J. Feng, Vacuum Brazing of GH99 Superalloy Using Graphene Reinforced BNi-2 Composite Filler, J. Mater. Sci. Technol., 2018, 34(10), p 1843–1850. https://doi.org/10.1016/j.jmst.2018.02.008

    Article  CAS  Google Scholar 

  16. H. Dong, J. Yang, Y. Xia, Xu, P. Li, C. Dong, J. Chen, N. Liu and L. Zheng, Effect of Cr Content in Ni-Based Amorphous Filler on Microstructure and Shear Strength of K4169 Nickel-Based Alloy Brazed Joint, J. Mater. Process. Technol., 2021, 290, p 116975.

    Article  CAS  Google Scholar 

  17. Z.W. Yang, C.L. Wang, Y. Han, Y.T. Zhao, Y. Wang and D.P. Wang, Design of Reinforced Interfacial Structure in Brazed Joints of C/C Composites and Nb by Pre-Oxidation Surface Treatment Combined with in Situ Growth of CNTs, Carbon N. Y., 2019, 143, p 494–506.

    Article  CAS  Google Scholar 

  18. W. Guo, T. Gao, Cui, Y. Zhu and P.K. Chu, Interfacial Reactions and Zigzag Groove Strengthening of C/C Composite and Rene N5 Single Crystal Brazed Joint, Ceram. Int., 2015, 41(9), p 11605–11610.

    Article  CAS  Google Scholar 

  19. H. Wang, J. Cao and J. Feng, Brazing Mechanism and Infiltration Strengthening of CC Composites to TiAl Alloys Joint, Scr. Mater., 2010, 63(8), p 859–862.

    Article  CAS  Google Scholar 

  20. Y. Zhang, G. Zou, L. Liu, A. Wu, Z. Sun and Y.N. Zhou, Vacuum Brazing of Alumina to Stainless Steel Using Femtosecond Laser Patterned Periodic Surface Structure, Mater. Sci. Eng. A, 2016, 662, p 178–184.

    Article  CAS  Google Scholar 

  21. S. Periane, A. Duchosal, S. Vaudreuil, H. Chibane, A. Morandeau, M. Anthony Xavior and R. Leroy, Influence of Heat Treatment on the Fatigue Resistance of Inconel 718 Fabricated by Selective Laser Melting (SLM), Mater. Today Proc., 2021, 46, p 7860–7865.

    Article  CAS  Google Scholar 

  22. Y. Liu, Q. Guo, C. Li, Y. Mei, Zhou, Y. Huang and H. Li, Recent Progress on Evolution of Precipitates in Inconel 718 Superalloy, Jinshu Xuebao/Acta Metall. Sin., 2016, 52(10), p 1259–1266.

    CAS  Google Scholar 

  23. X. Yuan, C. Yun Kang and M.B. Kim, Microstructure and XRD Analysis of Brazing Joint for Duplex Stainless Steel Using a Ni-Si-B Filler Metal, Mater. Charact., 2009, 60(9), p 923–931. https://doi.org/10.1016/j.matchar.2009.03.004

    Article  CAS  Google Scholar 

  24. T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, Alloy Phase Diagrams. T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, L. Kacprzak Ed., ASM International, Ohio, 2018, p 89–89

    Google Scholar 

  25. E. Baharzadeh, M. Shamanian, M. Rafiei and H. Mostaan, Properties of IN X-750/BNi-2/SAF 2205 Joints Formed by Transient Liquid Phase Bonding, J. Mater. Process. Technol., 2019, 274, p 116297.

    Article  CAS  Google Scholar 

  26. T. Tokunaga, K. Nishio, H. Ohtani and M. Hasebe, Phase Equilibria in the Ni – Si – B System *, Mater. Trans., 2003, 44(9), p 1651–1654.

    Article  CAS  Google Scholar 

  27. B. Binesh and A. Jazayeri Gharehbagh, Transient Liquid Phase Bonding of IN738LC/MBF-15/IN738LC Solidification Behavior and Mechanical Properties, J. Mater. Sci. Technol., 2016, 32(11), p 1137–1151. https://doi.org/10.1016/j.jmst.2016.07.017

    Article  CAS  Google Scholar 

  28. H. Zhang, C. Li, Q. Guo, Z. Ma, Y. Huang, H. Li and Y. Liu, Hot Tensile Behavior of Cold-Rolled Inconel 718 Alloy at 650 °C: The Role of δ Phase, Mater. Sci. Eng. A, 2018, 722, p 136–146.

    Article  CAS  Google Scholar 

  29. A. Łukaszek-Sołek, T. Śleboda, J. Krawczyk, S. Bednarek and M. Wojtaszek, Characterization of the Workability of Ni-Fe-Mo Alloy by Complex Processing Maps, J. Alloys Compd., 2019, 797, p 174–184.

    Article  Google Scholar 

  30. H. Zhang, C. Li, Q. Guo, Z. Ma, H. Li and Y. Liu, Improving Creep Resistance of Nickel-Based Superalloy Inconel 718 by Tailoring Gamma Double Prime Variants, Scr. Mater., 2019, 164, p 66–70.

    Article  CAS  Google Scholar 

  31. S.K. Sharma, K. Biswas and J.D. Majumdar, Effect of Heat Input on Mechanical and Electrochemical Properties of Electron-Beam-Welded Inconel 718, J. Mater. Eng. Perform., 2020, 29(3), p 1706–1714. https://doi.org/10.1007/S11665-020-04660-W/TABLES/4

    Article  CAS  Google Scholar 

  32. A. Malekan, M. Farvizi, S.E. Mirsalehi, N. Saito and K. Nakashima, Effect of Bonding Temperature on the Microstructure and Mechanical Properties of Hastelloy × Superalloy Joints Bonded with a Ni–Cr–B–Si–Fe Interlayer, J. Manuf. Process., 2019, 47, p 129–140.

    Article  Google Scholar 

  33. F. Jalilian, M. Jahazi and R.A.L. Drew, Microstructural Evolution during Transient Liquid Phase Bonding of Inconel 617 Using Ni-Si-B Filler Metal, Mater. Sci. Eng. A, 2006, 423(1–2), p 269–281.

    Article  Google Scholar 

  34. H. Dong, Y. Xia, Xu, G.J. Naz, Hao, P. Li, J. Zhou and C. Dong, Performance of GH4169 Brazed Joint Using a New Designed Nickel-Based Filler Metal via Cluster-plus-Glue-Atom Model, J. Mater. Sci. Technol., 2020, 39, p 89–98. https://doi.org/10.1016/j.jmst.2019.08.028

    Article  Google Scholar 

  35. L. Sisamouth, M. Hamdi and T. Ariga, Investigation of Gap Filling Ability of Ag-Cu-In Brazing Filler Metals, J. Alloys Compd., 2010, 504(2), p 325–329. https://doi.org/10.1016/j.jallcom.2010.05.129

    Article  CAS  Google Scholar 

  36. Q. He, D. Zhu, D. Dong, M. Xu, A. Wang and Q. Sun, Effect of Bonding Temperature on Microstructure and Mechanical Properties during TLP Bonding of GH4169 Superalloy, Appl. Sci., 2019, 9(6), p 1112.

    Article  CAS  Google Scholar 

  37. N.P. Wikstrom, A.T. Egbewande and O.A. Ojo, High Temperature Diffusion Induced Liquid Phase Joining of a Heat Resistant Alloy, J. Alloys Compd., 2008, 460(1–2), p 379–385.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (52075317), the Royal Society through International Exchanges 2018 Cost Share (China) scheme (IEC\NSFC\181278), Shanghai Sailing Program (19YF1418100), Shanghai Science and Technology Committee Innovation Grant (17JC1400600, 17JC1400601, 19511106400, 19511106402), Karamay Science and Technology Major Project (2018ZD002B), Aid for Xinjiang Science and Technology Project (2019E0235), Shanghai Local Colleges and Universities Capacity Building Special Plan Project (19030501300), and National Key R & D Program of China (2017YFB1301600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haichuan Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, N., Shi, H., Zhang, P. et al. Microstructure and Properties of Vacuum-Brazed Joints of 3D-Structured Ni718 High-Temperature Alloy Prepared by Selective Laser Melting. J. of Materi Eng and Perform 31, 7921–7934 (2022). https://doi.org/10.1007/s11665-022-06879-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06879-1

Keywords

Navigation