Skip to main content

Advertisement

Log in

Effects of Addition of Titanium on Microstructures and Properties of Laser Butt Welded Joints of Mo–30W Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The fusion welding of Mo–30W alloy, a kind of brittle and refractory materials, is still challenging. This study investigated effects of addition of titanium (Ti) on microstructures and properties of laser butt welded joints of Mo–30W alloy. The microstructure, phase distribution and mechanical performance of the welded joint with and without Ti were studied by optical microscope, scanning electron microscope, energy-dispersive spectrometer, electron backscattering diffraction, microhardness tests and tensile tests. The tensile strength of Mo–30W laser welded joint was increased from 108.56 to 409.57 MPa by adding Ti element, reached 58.34% that of base metal. MoO2 phase and WO2 phase precipitated at the grain boundary of FZ region of Mo–30W alloy laser butt welded joints without Ti, which significantly reduced the grain boundary strength, resulting in low tensile strength. After the addition of Ti, TiO2 phase with low Gibbs free energy was formed in GBs (grain boundaries), which reduced the number of MoO2 phase and WO2 phase harmful to the GBs strength, therefore, the tendency of grain boundary embrittlement was reduced. The research results can provide reference for laser welding of brittle and refractory metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2010, with permission from Elsevier

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H.L. Brown and C.P. Kempter, Elastic Properties of Thoriated W-Mo and W-Mo-Re Alloys, J. Less-Common Met., 1967, 12(2), p 166–168.

    Article  CAS  Google Scholar 

  2. B. Paul, D. Jain, S.P. Chakraborty, I.G. Sharma, and A.K. Suri, Sintering Kinetics Study of Mechanically Alloyed Nanocrystalline Mo–30wt.% W, Thermochim Acta, 2011, 512, p 134–141.

    Article  CAS  Google Scholar 

  3. S.P. Chakraborty, S. Banerjee, G. Sanyal, V.S. Bhave, B. Paul, I.G. Sharma, and A.K. Suri, Studies on the Synthesis of a Mo–30wt% W Alloy by Non-conventional Approaches, J. Alloys Compd., 2010, 501, p 211–217.

    Article  CAS  Google Scholar 

  4. S. Antusch, J. Reiser, J. Hoffmann, and A. Onea, Refractory Materials for Energy Applications, Energy Technol., 2017, 5, p 1064.

    Article  CAS  Google Scholar 

  5. T. Wang, N. Li, Y. Zhang, S. Jiang, B. Zhang, Y. Wang, and J. Feng, Influence of Welding Speed on Microstructures and Mechanical Properties of Vacuum Electron Beam Welded TZM Alloy Joints, Vacuum, 2017, 149, p 29–35.

    Article  Google Scholar 

  6. R. Kishore and A. Kumar, Effect of Carbon on the Ductilisation of Electron-Beam Welds in Molybdenum, J. Nucl. Mater., 1981, 101(1–2), p 16–27.

    Article  CAS  Google Scholar 

  7. M. Kolarikova, L. Kolarik, and P. Vondrous. Welding of Thin Molybdenum Sheets by EBW and GTAW, Annals of Daaam & Proceedings. 2012

  8. M.X. Xie, Y.X. Li, X.T. Shang, X.W. Wang, and J.Y. Pei, Effect of Heat Input on Porosity Defects in a Fiber Laser Welded Socket-Joint Made of Powder Metallurgy Molybdenum Alloy, Materials, 2019, 12(9), p 1433.

    Article  CAS  Google Scholar 

  9. M.X. Xie, Y.X. Li, X.T. Shang, X.W. Wang, and J.Y. Pei, Microstructure and Mechanical Properties of a Fiber Welded Socket-Joint made of Powder Metallurgy Molybdenum Alloy, Metals, 2019, 9(6), p 640.

    Article  CAS  Google Scholar 

  10. M.X. Xie, X.T. Shang, Y.X. Li, Z.H. Zhang, M.H. Zhu, and J.T. Xiong, Rotary Friction Welding of Molybdenum without Upset Forging, Materials, 2020, 13(8), p 1957.

    Article  CAS  Google Scholar 

  11. P. Liu, K.Y. Feng, and G.M. Zhang, A Novel Study on Laser Lap Welding of Refractory Alloy 50Mo–50Re of Small-Scale Thin Sheet, Vacuum, 2017, 136, p 10–13.

    Article  Google Scholar 

  12. L.L. Zhang, L.J. Zhang, J. Long, X. Sun, J.X. Zhang, and S.J. Na, Enhanced Mechanical Performance of Fusion Zone in Laser Beam Welding Joint of Molybdenum Alloy Due to Solid Carburizing, Mater. Des., 2019, 181, p 107957.

    Article  CAS  Google Scholar 

  13. D.P. Kramer, J.R. Mcdougal, B.A. Booher, J.D. Ruhkamp, and J.J. Kwiatkowski. Electron beam and Nd-YAG laser welding of niobium-1% zirconium and molybdenum-44.5% rhenium thin select material, Energy Conversion Engineering Conference & Exhibit IEEE 2013

  14. S. Majumdar, G.B. Kale, and I.G. Sharma, A Study on Preparation of Mo–30W alloy by Aluminothermic Co-Reduction of Mixed Oxides, J. Alloys Compd., 2005, 394(1–2), p 168–175.

    Article  CAS  Google Scholar 

  15. C.Y. Wang, Y.K. Teng, and D. Dong, Study on Recrystallization Behavior of Mo-30W Molybdenum Alloy, Powder Metall. Technol., 2018, 36(6), p 418–422.

    Google Scholar 

  16. S. Majumdar, I.G. Sharma, and A.K. Suri, Development of Oxidation Resistant Coatings on Mo–30W Alloy, Int. J. Refract. Met. Hard Mater., 2008, 26(6), p 549–554.

    Article  CAS  Google Scholar 

  17. M.K. Miller, E.A. Kenik, M.S. Mousa, K.F. Russell, and A.J. Bryhan, Improvement in the Ductility of Molybdenum Alloys due to Grain Boundary Segregation, Scr. Mater., 2002, 46(4), p 299–303.

    Article  CAS  Google Scholar 

  18. K. Leitner, D. Lutz, W. Knabl, M. Eidenberger-Schober, K. Huber, A. Lorich, H. Clemens, and V. Maier-Kiener, Grain Boundary Segregation Engineering in As-Sintered Molybdenum for Improved Ductility, Scr. Mater., 2018, 156, p 60–63.

    Article  CAS  Google Scholar 

  19. L.J. Zhang, J.Y. Pei, L.L. Zhang, J. Long, J.X. Zhang, and S.J. Na, Laser Seal Welding of End Plug to Thin-Walled Nanostructured High-Strength Molybdenum Alloy Cladding with a Zirconium Interlayer, J. Mater. Process. Technol., 2019, 267, p 338–347.

    Article  CAS  Google Scholar 

  20. P.Y. Park, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, The Corrosion Behavior of Sputter-Deposited Amorphous Mo-Zr Alloys in 12 M HCl, Corros. Sci., 1994, 36(8), p 1395–1410.

    Article  CAS  Google Scholar 

  21. M. Nagae, Y. Takemoto, T. Yoshio, J. Takada, and Y. Hiraoka, Preparation of Structurally Controlled Dilute Molybdenum–Titanium Alloys Through a Novel Multi-Step Internal Nitriding Technique and Their Mechanical Properties, Mater. Sci. Eng. A, 2005, 406, p 50–56.

    Article  Google Scholar 

  22. Q. Shen, L.M. Zhang, H.P. Xiong, J.S. Hua, and H. Tan, Fabrication of W-Mo-Ti System Flier-Plate with Graded Impedance for Generating Quasi-Isentropic Compression, Chin. Sci. Bull., 2000, 45(15), p 1421–1424.

    Article  CAS  Google Scholar 

  23. J.L. Fan, M.Y. Lu, H.C. Cheng, J.M. Tian, and B.Y. Huang, Effect of Alloying Elements Ti, Zr on the Property and Microstructure of Molybdenum, Int. J. Refract. Met. Hard Mater., 2009, 27(1), p 78–82.

    Article  CAS  Google Scholar 

  24. D.W. Jones and A.D. McQuillan, Magnetic Susceptibility and Hydrogen Affinity of B.C.C. Alloys of Nb-Mo Nb-Re and Mo-Re, J. Phys. Chem. Solids, 1962, 23(10), p 1441–1447.

    Article  CAS  Google Scholar 

  25. H. Yutaka, Effect of Rhenium and Carbon Additions on Low-Temperature Fracture Behavior of Molybdenum, J. Jpn. Inst. Met., 1992, 56(2), p 161–167.

    Article  Google Scholar 

  26. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility, Nat. Mater., 2013, 12(4), p 344–350.

    Article  CAS  Google Scholar 

  27. L.L. Zhang, L.J. Zhang, J. Long, J. Ning, J.X. Zhang, and S.J. Na, Effects of Titanium on Grain Boundary Strength in Molybdenum Laser Weld Bead and Formation and Strengthening Mechanisms of Brazing Layer, Mater. Des., 2019, 169, p 107681.

    Article  CAS  Google Scholar 

  28. Z. Hu, Y. Zhao, K. Guan, Z. Wang, and Z. Ma, Pure Tungsten and Oxide Dispersion Strengthened Tungsten Manufactured by Selective Laser Melting: Microstructure and Cracking Mechanism, Addit. Manuf., 2020, 36(6), p 101579.

    CAS  Google Scholar 

  29. L.J. Zhang, C.H. Wang, Y.B. Zhang, Q. Guo, R.Y. Ma, J.X. Zhang, and S.J. Na, The Mechanical Properties and Interface Bonding Mechanism of Molybdenum/SUS304L by Laser Beam Welding with Nickel Interlayer, Mater. Des., 2019, 182, p 108002.

    Article  CAS  Google Scholar 

  30. C.G. Zhang, J.L. Fan, and H.C. Cheng, Effects of W Content by Mass on the Microstructure and Mechanical Properties of Mo–W Alloy, Powder Metall. Technol., 2020, 38, p 18–24.

    CAS  Google Scholar 

  31. B. Tabernig and N. Reheis, Joining of Molybdenum and its Application, Int. J. Refract. Met. Hard Mater, 2010, 2, p 728–733.

    Article  Google Scholar 

  32. A. Chatterjee, S. Kumar, R. Tewari, and G.K. Dey, Welding of Mo-Based Alloy Using Electron Beam and Laser-GTAW Hybrid Welding Techniques, Metall. Mater. Trans. A, 2015, 47, p 1143–1152.

    Article  Google Scholar 

  33. D. Bachurina, A. Suchkov, J. Gurova, M. Savelyev, and O. Sevryukov, Joining Tungsten with Steel for DEMO: Simultaneous Brazing by Cu-Ti Amorphous Foils and Heat Treatment, Fusion Eng. Des., 2021, 162, p 112099.

    Article  CAS  Google Scholar 

  34. B. Hu, C.L. Qiu, S.L. Cui, P.S. Wang, J.Q. Zhou, W.S. Xu, F.F. Min, and J.R. Zhao, CALPHAD-type Thermodynamic Description of Phase Equilibria in the Ti-W-M (M = Zr, Mo, Nb) Ternary Systems, J. Chem. Thermodyn., 2019, 131, p 25–32.

    Article  CAS  Google Scholar 

  35. T. Wang, Y. Zhang, S. Jiang, X. Li, and J. Feng, Stress Relief and Purification Mechanisms for Grain Boundaries of Electron Beam Welded TZM Alloy Joint with Zirconium Addition, J. Mater. Process. Technol., 2018, 251, p 168–174.

    Article  CAS  Google Scholar 

  36. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen, FactSage Thermochemical Software and Databases, Calphad, 2002, 26, p 189–228.

    Article  CAS  Google Scholar 

  37. E. Smith, The Formation of a Cleavage Crack in a Crystalline solid—I, Acta Mater., 1996, 14(8), p 985–989.

    Article  Google Scholar 

  38. E. Smith, The Formation of a Cleavage Crack in a Crystalline Solid—II, Acta Mater., 1996, 14(8), p 991–996.

    Article  Google Scholar 

  39. W.S. Tsurekawa, The Control of Brittleness and Development of Desirable Mechanical Properties in Polycrystalline Systems by Grain Boundary Engineering, Mater. Des., 1999, 47, p 15–16.

    Google Scholar 

  40. K. Leitner, N. Babinsky, P.J. Felfer, D. Holec, J. Cairney, W. Knabl, A. Lorich, H. Clemens, and S. Primig, On Grain Boundary Segregation in Molybdenum Materials, Mater. Des., 2017, 135, p 204–212.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was also supported by National Natural Science Foundation of P. R. China (Grant No. 51775416) and Science and Technology Major Project of Shaanxi Province (2020ZDZX04-01-02). The authors are also grateful to the support of Instrument Analysis Center of Xi'an Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ning.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, PX., Zhang, LJ., Ning, J. et al. Effects of Addition of Titanium on Microstructures and Properties of Laser Butt Welded Joints of Mo–30W Alloy. J. of Materi Eng and Perform 31, 8542–8553 (2022). https://doi.org/10.1007/s11665-022-06863-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06863-9

Keywords

Navigation