Skip to main content

Advertisement

Log in

Comparison of Five Different Models Predicting the Hot Deformation Behavior of EA4T Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The modified Zerilli–Armstrong (mZ-A) model, optimized Zerilli–Armstrong (oZ-A) model, modified Johnson–Cook model, double multiple nonlinear regression (DMNR) model, and BP artificial neural network (BPANN) model were all used to compare the hot deformation behavior of EA4T steel in this paper. The Gleeble-3800 simulator was used to conduct thermal compression tests. The deformation temperature range was 1243~1443 K, the strain rate range was 0.01~1/s and the true strain was 0.8. The obtained stress–strain experimental data were used to calculate the material constants for the five constitutive models, and the established constitutive model was then thoroughly evaluated using the correlation coefficient (R), average absolute error (AARE), root-mean-square error (RMSE), and relative error statistical results (RESR). The experimental results showed that the R value of the mZ-A model is 0.9880, the AARE value is 6.6550%, the RMSE value is 5.8777 MPa, the variation range of the RESR value is − 40.3496 ~ 21.7640%, and the average value is 1.3098%. The mZ-A model cannot adequately depict the high temperature flow behavior of EA4T steel when compared to the other four models. With an R value of 0.9996, an AARE value of 1.1630%, an RMSE value of 1.0358 MPa, a variation range of 12.9101 to 10.3263%, and an average value of 0.0070%, the trained BPANN model has the best prediction performance. The other three models' predictions are in good agreement with the experimental results. The oZ-A model, however, can more accurately follow the deformation behavior of EA4T steel at high temperatures than the other two models. Therefore, when the physical situation of a material response needs to be known, the oZ-A model can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. W.-J. Chen, Q.-Y. Chen, Y. Mao and S.-C. Tang, Effect of Laser Cladding on Microstructural Transformation and Mechanical Properties of Heat Affected Zone of EA4T Steel[J], Mater. Exp., 2021, 11(10), p 1707–1715.

    Article  CAS  Google Scholar 

  2. D. Li, Z. Zhu, S. Xiao, G. Zhang and Y. Lu, Plastic Flow Behavior Based on Thermal Activation and Dynamic Constitutive Equation of 25CrMo4 Steel During Impact Compression[J], Mater. Sci. Eng. A, 2017, 707, p 459–465.

    Article  CAS  Google Scholar 

  3. S. Fintova, P. Pokorny, R. Fajkos and P. Hutar, EA4T Railway Axle Steel Fatigue Behavior Under Very High-Frequency Fatigue Loading[J], Eng. Failure Anal., 2020 https://doi.org/10.1016/j.engfailanal.2020.104668

    Article  Google Scholar 

  4. L.-M. Kang, M. Lei, J. Zou, Y.-L. Liang and X.-P. Tang, The Influence of Circulation Quenching on Temper Brittleness of Steel EA4T[J], Adv. Mater. Res., 2012 https://doi.org/10.4028/www.scientific.net/AMR.463-464.712

    Article  Google Scholar 

  5. P. Pokorny, L. Nahlik and P. Hutar, Influence of Variable Stress Ratio During Train Operation on Residual Fatigue Lifetime of Railway Axles[J], Proc. Struct. Integr., 2016, 2, p 3585–3592.

    Google Scholar 

  6. X. Zhao, S. Wu, J. Bao, N. Ao, W. Peng and W. Sun, Experimental Characterization and Numerical Modeling on External Impacting of High-Speed Railway Axle EA4T Steel[J], Eng. Fail. Anal., 2021 https://doi.org/10.1016/j.engfailanal.2021.105449

    Article  Google Scholar 

  7. Y.-C. Lin and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working[J], Mater. Des., 2011, 32(4), p 1733–1759.

    Article  CAS  Google Scholar 

  8. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J.-J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions[J], Prog. Mater Sci., 2014, 60(1), p 130–207.

    Article  CAS  Google Scholar 

  9. Y. Xu, Y. Zhang, X. Zhuang, Z. Cao, Y. Lu and Z. Zhao, Numerical Modeling and Anvil Design of High-Speed Forging Process for Railway Axles[J], Int.J. Mater. Form., 2021, 14, p 813–832.

    Article  Google Scholar 

  10. G. Su, Z. Yun, Y.C. Lin, D.G. He, S. Zhang and Z.J. Chen, Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates[J], Materials, 2021, 14, p 6750. https://doi.org/10.3390/ma14226750

    Article  CAS  Google Scholar 

  11. Z.J. Chen, Y.C. Lin, D.G. He, Y.M. Lou and M.S. Chen, A Unified Dislocation Density-Based Model for an Aged Polycrystalline Ni-Based Superalloy Considering the Coupled Effects of Complicate Deformation Mechanisms and Initial δ Phase[J], Mater. Sci. Eng., 2021, 827, p 142062. https://doi.org/10.1016/j.msea.2021.142062

    Article  CAS  Google Scholar 

  12. Y.Q. Jiang, Y.C. Lin, G.Q. Wang, G.D. Pang, M.S. Chen and Z.C. Huang, Microstructure Evolution and a Unified Constitutive Model for a Ti-55511 Alloy Deformed in β Region[J], J. Alloy. Compd., 2021, 870, 159534. https://doi.org/10.1016/j.jallcom.2021.159534

    Article  CAS  Google Scholar 

  13. I.-J. Beyerlein and C. Tomé, A Dislocation-Based Constitutive Law for Pure Zr Including Temperature Effects[J], Int. J. Plast, 2008, 24(5), p 867–895.

    Article  CAS  Google Scholar 

  14. H.-Y. Li, J.-D. Hu, D.-D. Wei, X.-F. Wang and Y.-H. Li, Artificial Neural Network and Constitutive Equations to Predict the Hot Deformation Behavior of Modified 2.25Cr–1Mo Steel[J], Mater. Des., 2012, 42, p 192–197.

    Article  CAS  Google Scholar 

  15. S.-H. Song, A Comparison Study of Constitutive Equation, Neural Networks, and Support Vector Regression for Modeling Hot Deformation of 316L Stainless Steel[J], Materials, 2020 https://doi.org/10.3390/ma13173766

    Article  Google Scholar 

  16. J. Cai, K. Wang and Y. Han, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict High-Temperature Flow Behavior of Ti–6Al–4V Alloy in α + β Phase[J], High Temp. Mater. Processes (London), 2016, 35(3), p 297–307.

    Article  CAS  Google Scholar 

  17. Y. Liu, L.-I. Ming, X.-W. Ren, Z.-B. Xiao and Y.-C. Huang, Flow Stress Prediction of Hastelloy C-276 Alloy Using Modified ZerilliArmstrong, JohnsonCook and Arrhenius-Type Constitutive Models[J], Trans. Nonferrous Metals Soc. China, 2020, 30(11), p 3031–3042.

    Article  CAS  Google Scholar 

  18. G. Xu, L. Wang, S. Li and L. Wang, Hot Deformation Behavior of EA4T Steel[J], Acta Metall. Sinica, 2012, 25(5), p 374–382.

    CAS  Google Scholar 

  19. P. Zhou and Q.-X. Ma, Dynamic Recrystallization Behavior and Processing Map Development of 25CrMo4 Mirror Plate Steel During Hot Deformation[J], Acta Metall. Sinica, 2017, 30, p 907–920.

    Article  CAS  Google Scholar 

  20. Y.-M. Huo, Q. Bai, B. Wang, J. Lin and J. Zhou, A New Application of Unified Constitutive Equations for Cross Wedge Rolling of a High-Speed Railway Axle Steel[J], J. Mater. Process. Technol., 2015, 223, p 274–283.

    Article  CAS  Google Scholar 

  21. Z. Zhu, Y. Lu, Q. Xie, D. Li and N. Gao, Mechanical Properties and Dynamic Constitutive Model of 42CrMo Steel[J], Mater. Des., 2017, 119, p 171–179.

    Article  CAS  Google Scholar 

  22. Y.C. Lin, M.S. Chen and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput[J], Mater. Sci, 2008, 42, p 470–477. https://doi.org/10.1016/j.commatsci.2007.08.011

    Article  CAS  Google Scholar 

  23. Y.-M. Huo, B.-Y. Wang and J.-G. Lin, Development of Constitutive Model of EA4T High-Speed Train Shaft Steel Based on Internal-State-Variable Method[J], Appl. Mech. Mater., 2012, 189, p 31–35.

    Article  CAS  Google Scholar 

  24. W. Wang, J. Zhao, R.-X. Zhai and R. Ma, Arrhenius-Type Constitutive Model and Dynamic Recrystallization Behavior of 20Cr2Ni4A Alloy Carburizing Steel[J], Steel Res. Int., 2017 https://doi.org/10.1002/srin.201600196

    Article  Google Scholar 

  25. G. Ji, F. Li, Q. Li, H. Li and Z. Li, Prediction of the Hot Deformation Behavior for Aermet100 Steel Using an Artificial Neural network[J], Comput. Mater. Sci., 2010, 48(3), p 626–632.

    Article  CAS  Google Scholar 

  26. X. Xiao, G.-Q. Liu, B.-F. Hu, X. Zheng, L.-N. Wang, S.-J. Chen and A. Ullah, A Comparative Study on Arrhenius-Type Constitutive Equations and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in 12Cr3WV Steel[J], Comput. Mater. Sci., 2012, 62, p 227–234.

    Article  CAS  Google Scholar 

  27. D. Samantaray, S. Mandal and A.-K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel[J], Comput. Mater. Sci., 2009 https://doi.org/10.1016/j.commatsci.2009.09.025

    Article  Google Scholar 

  28. D. Samantaray, S. Mandal, U. Borah, A.-K. Bhaduri and P.-V. Sivaprasad, A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel[J], Mater. Sci. Eng. A, 2009, 526, p 1–6.

    Article  Google Scholar 

  29. L. Quan and J.-Z. Yang, Prediction of High Temperature Flow Stress of AZ80 Magnesium Alloy by Using Modified and Optimized Zerilli-Armstrong Constitutive Models [J], Chin. J. Nonferrous Metals, 2021, 31(8), p 2091–2100.

    Google Scholar 

  30. Y.C. Lin, L.T. Li, Y.X. Fu and Y.Q. Jiang, Hot Compressive Deformation Behavior of 7075 Al Alloy Under Elevated Temperature[J], J. Mater. Sci, 2012, 47, p 1306–1318. https://doi.org/10.1007/s10853-011-5904-y

    Article  CAS  Google Scholar 

  31. Y.-C. Lin, X.-M. Chen and G. Liu, A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel[J], Mater. Sci. Eng. A, 2010, 527(26), p 6980–6986.

    Article  Google Scholar 

  32. Z. Yuan, F. Li, H. Qiao, M. Xiao, J. Cai and J. Li, A modified constitutive equation for elevated temperature flow behavior of Ti–6Al–4V alloy based on double multiple nonlinear regression[J], Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2013, 578, p 260–270.

    Article  CAS  Google Scholar 

  33. O.-A. BhekisiphoTwala, Constitutive Modelling of INCONEL 718 Using Artificial Neural Network[J], IOP Conf. Series Mater. Sci. Eng., 2017 https://doi.org/10.1088/1757-899X/225/1/012054

    Article  Google Scholar 

  34. M. Ahmed, M. Anastasia, K. Anton, P. Theo, A. Sergey, K. James and P. Vladimir, Modelling of the Superplastic Deformation of the Near-α Titanium Alloy (Ti-2.5Al-1.8Mn) Using Arrhenius-Type Constitutive Model and Artificial Neural Network[J], Metals, 2017, 7, p 568–568.

    Article  Google Scholar 

  35. L.F. Guo and L.I. Bao-Cheng, Constitutive relationship model of TC21 alloy based on artificial neural network[J], Trans. Nonferrous Metals Soc. China, 2013 https://doi.org/10.1016/S1003-6326(13)62658-8

    Article  Google Scholar 

  36. A. Saxena, A. Kumaraswamy, N. Kotkunde and K. Suresh, Constitutive Modeling of High-Temperature Flow Stress of Armor Steel in Ballistic Applications: A Comparative Study[J], J. Mater. Eng. Perform., 2019, 28(10), p 6505–6513.

    Article  CAS  Google Scholar 

  37. A. Rudra, M. Ashiq, S. Das and R. Dasgupta, Constitutive Modeling for Predicting High-Temperature Flow Behavior in Aluminum 5083+10WtPct SiC p Composite[J], Metall. Mater. Trans. B, 2019 https://doi.org/10.1007/s11663-019-01531-1

    Article  Google Scholar 

  38. M.L. Shen, Y.M. Huo, T. He, X. Yong and J.X. Xing, Comparison of Two Constitutive Modelling Methods in Application of TC16 Alloy at the Elevated Deformation Temperature[J], Mater. Today Commun., 2020, 24, p 101053.

    Article  CAS  Google Scholar 

  39. A. Rudra, S. Das and R. Dasgupta, J. Mater. Eng. Perform., 2019, 28, p 87–99. https://doi.org/10.1007/s11665-018-3813-9

    Article  CAS  Google Scholar 

  40. G.Z. Quan, Z.H. Zhang, Y.T. Zhou, T. Wang and Y.F. Xia, Numerical Description of Hot Flow Behaviors at Ti-6Al-2Zr-1Mo-1V Alloy By GA-SVR and Relative Applications[J], Mater. Res., 2016, 19(6), p 1253–1269.

    Article  CAS  Google Scholar 

  41. H. Ahmadi, H. Ashtiani and M. Heidari, A Comparative Study of Phenomenological, Physically-Based and Artificial Neural Network Models to Predict the Hot Flow Behavior of API 5CT-L80 Steel[J], Mater. Today Commun., 2020, 25, p 101528.

    Article  CAS  Google Scholar 

  42. Z. Yuan, F. Li, H. Qiao, M. Xiao, J. Cai and L. Jiang, A Modified Constitutive Equation for Elevated Temperature Flow Behavior of Ti–6Al–4V Alloy Based on Double Multiple Nonlinear Regression[J], Mater. Sci. Eng. Struct. Mater. Prop. Microst. Process., 2013, 578(20), p 260–270.

    Article  CAS  Google Scholar 

  43. Z. Yuan, F. Li, G. Ji, H. Qiao and J. Li, Flow Stress Prediction of SiCp/Al Composites at Varying Strain Rates and Elevated Temperatures[J], J. Mater. Eng. Perform., 2014, 23(3), p 1016–1027.

    Article  CAS  Google Scholar 

  44. N. Neethu, N.A. Hassan, R.R. Kumar, P. Chakravarthy, A. Srinivasan and A.M. Rijas, Comparison of Prediction Models for the Hot Deformation Behavior of Cast Mg–Zn–Y Alloy[J], Trans. Indian Inst. Met., 2020, 73(6), p 1619–1628.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was support by National key research and development plan funding (Grant No. 2018YFB1307900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanming Huo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Huo, Y., He, T. et al. Comparison of Five Different Models Predicting the Hot Deformation Behavior of EA4T Steel. J. of Materi Eng and Perform 31, 8169–8182 (2022). https://doi.org/10.1007/s11665-022-06828-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06828-y

Keywords

Navigation