Skip to main content

Advertisement

Log in

Simultaneous Effects of Carbon Nanotube Content and Diameter Size on Microstructure and Mechanical Properties of Double Pressed Double Sintered Al/Carbon Nanotube Nanocomposites

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 18 April 2022

This article has been updated

Abstract

This work examined the effect of content (1–12wt.%) and diameter size (8, 20, and 40 nm) of carbon nanotubes (CNTs) on the microstructure and mechanical behavior of aluminum matrix nanocomposites. After mixing powders, using the ball milling technique, the nanocomposites were fabricated by Double-Pressing Double-Sintering (DPDS) process. Al/CNTs nanocomposites were characterized by Raman spectroscopy, x-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The characterization of nanocomposites revealed that the CNTs content and diameter size had an important effect on the formation of Al/CNTs interface, clustering of CNTs, and mechanical properties. In addition, aluminum carbide (Al4C3) was observed in the interface of Al/CNTs. Under the same conditions, the tendency of CNTs with a diameter of 8 nm (the smallest diameter) was higher to form agglomerate and Al4C3 than other diameters of 20 and 40 nm. The maximum hardness value (94.8HV) and compressive strength (293 MPa) were obtained when CNTs diameter size was 40 nm in Al-8wt.% CNTs. The fracture surfaces indicated CNTs pull-out and bridging between the aluminum matrix. One of the significant achievements of this paper is the possibility of adding high amounts of CNTs in double-pressed double-sintered Al-based nanocomposites, which can improve the properties up to 8 wt.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. H. Abdoos, H. Khorsand and A.A. Yousefi, Nano-Particles in Powder Injection Molding of an Aluminum Matrix Composite: Rheological Behavior, Production and Properties, Int. J. Mater. Res., 2017, 108(3), p 237.

    Article  CAS  Google Scholar 

  2. L.K. Singh, A. Bhadauria, A. Oraon and T. Laha, Spark Plasma Sintered Al-0. 5 wt% MWCNT Nanocomposite: Effect of Sintering Pressure on the Densification Behavior and Multi-Scale Mechanical Properties, Diam. Relat. Mater, Elsevier, 2019, 91, p 144–155.

    CAS  Google Scholar 

  3. H. Daghigh, V. Daghigh, A. Milani, D. Tannant, T.E. Lacy and J.N. Reddy, Nonlocal Bending and Buckling of Agglomerated CNT-Reinforced Composite Nanoplates, Compos. Part B Eng., 2020, 183, p 107716.

    Article  CAS  Google Scholar 

  4. K.M. Liew, Z. Pan and L. Zhang, The Recent Progress of Functionally Graded CNT Reinforced, Sci. China Phys. Mech. Astron, 2020 https://doi.org/10.1007/s11433-019-1457-2

    Article  Google Scholar 

  5. S.C. Tjong, Recent Progress in the Development and Properties of Novel Metal Matrix Nanocomposites Reinforced with Carbon Nanotubes and Graphene Nanosheets, Mater. Sci. Eng. R Reports, 2013, 74(10), p 281–350.

    Article  Google Scholar 

  6. M.S.S. Saravanan, K.L. Yohannan, M. Hafeer, K.V. Akhil and S.K. Babu, Influence of Crystalline Nature of Aluminium in Mechanical Properties of Al-CNT Composites, Mater. Today Proc., 2019, 27, p 2744–2747.

    Article  Google Scholar 

  7. A.A. Najimi and H.R. Shahverdi, Microstructure and Mechanical Characterization of Al6061-CNT Nanocomposites Fabricated by Spark Plasma Sintering, Mater. Charact., 2017, 133, p 44–53.

    Article  CAS  Google Scholar 

  8. A. Venkataraman, E.V. Amadi, Y. Chen and C. Papadopoulos, Carbon Nanotube Assembly and Integration for Applications, Nanoscale Res. Lett., 2019. https://doi.org/10.1186/s11671-019-3046-3

    Article  Google Scholar 

  9. S. Mallakpour and E. Khadem, Carbon Nanotube-Metal Oxide Nanocomposites: Fabrication, Properties and Applications, Chem. Eng. J., 2016, 302, p 344–367.

    Article  CAS  Google Scholar 

  10. J.N. Coleman, U. Khan, W.J. Blau and Y.K. Gun’ko, Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites, Carbon, 2006, 44(9), p 1624–1652.

    Article  CAS  Google Scholar 

  11. A.M.K. Esawi and M.M. Farag, Carbon Nanotube Reinforced Composites: Potential and Current Challenges, Mater. Des., 2007, 28(9), p 2394–2401.

    Article  CAS  Google Scholar 

  12. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher and S. Lanka, The Influence of Carbon Nanotube (CNT) Morphology and Diameter on the Processing and Properties of CNT-Reinforced Aluminium Composites, Compos. Part A Appl. Sci. Manuf., 2011, 42(3), p 234–243.

    Article  Google Scholar 

  13. H. Herzallah, A. Elsayd, A. Shash and M. Adly, Effect of Carbon Nanotubes (CNTs) and Silicon Carbide (SiC) on Mechanical Properties of Pure Al Manufactured by Powder Metallurgy, J. Mater. Res. Technol., 2020, 9(2), p 1948–1954.

    Article  CAS  Google Scholar 

  14. C.R. Bradbury, J.K. Gomon, L. Kollo, H. Kwon and M. Leparoux, Hardness of Multi Wall Carbon Nanotubes Reinforced Aluminium Matrix Composites, J. Alloys Compd., 2014, 585, p 362–367.

    Article  CAS  Google Scholar 

  15. Í. Carneiro and S. Simões, Strengthening Mechanisms in Carbon Nanotubes Reinforced Metal Matrix Composites: A Review, Metals (Basel), 2021, 11(10), p 1–27.

    Article  Google Scholar 

  16. S.A.A. Alem, R. Latifi, S. Angizi, N. Mohamadbeigi, M. Rajabi, E. Ghasali and Y. Orooji, Development of Metal Matrix Composites and Nanocomposites Via Double-Pressing Double-Sintering (DPDS) Method, Mater. Today Commun., 2020, 25, p 101245.

    Article  CAS  Google Scholar 

  17. S. Sivananthan, S. Gnanasekaran and J.S.C. Samuel, Preparation and Characterization of Aluminium Nanocomposites Based on MWCNT, Appl. Mech. Mater., 2014, 550, p 30–38.

    Article  Google Scholar 

  18. D. Milligan, U. Engstrom, J. Lingenfelter, S. Dizdar and I. Nyberg, Material Properties of Heat Treated Double Pressed/Sintered P/M Steels in Comparison to Warm Compacted/Sinter Hardened Materials, SAE World Congress & Exhibition, SAE International, 2003 (No. 2003-01-0338).

  19. C.M. Sonsino and R. Ratzi, Warm Powder Compaction Substitutes Conventionally Double Pressed and Double Sintered Synchroniser Hubs, Powder Metall., 2004, 47(4), p 352–357.

    Article  CAS  Google Scholar 

  20. A.V. Aborkin, A.I. Elkin, V.V. Reshetniak, A.M. Obedkov, A.E. Sytschev, V.G. Leontiev, D.D. Titov and M.I. Alymov, Thermal Expansion of Aluminum Matrix Composites Reinforced by Carbon Nanotubes with In-Situ and Ex-Situ Designed Interfaces Ceramics Layers, J. Alloys Compd., 2021, 872, p 159593.

  21. G. Fan, Y. Jiang, Z. Tan, Q. Guo, D.B. Xiong, Y. Su, R. Lin, L. Hu, Z. Li and D. Zhang, Enhanced Interfacial Bonding and Mechanical Properties in CNT/Al Composites Fabricated by Flake Powder Metallurgy, Carbon, 2018, 130, p 333–339.

    Article  CAS  Google Scholar 

  22. M.M. Billah and Q. Chen, Al–CNT–Ni Composite with Significantly Increased Strength and Hardness, SN Appl. Sci, 2019, 1, p 1–6.

    Article  Google Scholar 

  23. Q.G. Fu, L. Zhuang, H.J. Li, L. Feng, J.Y. Jing and B.Y. Tan, Effect of Carbon Nanotubes on the Toughness, Bonding Strength and Thermal Shock Resistance of SiC Coating for C/C-ZrC-SiC Composites, J. Alloys Compd., 2015, 645, p 206–212.

    Article  CAS  Google Scholar 

  24. A. Aborkin, D. Babin, A. Zalesnov, E. Prusov and A. Ob, Effect of Ceramic Coating on Carbon Nanotubes Interaction with Matrix Material and Mechanical Properties of Aluminum Matrix Nanocomposite, Ceram. Int., 2020, 46, p 19256–19263.

    Article  CAS  Google Scholar 

  25. S.C. Yoo, B. Kang, P. Van Trinh and D.D. Phuong, Enhanced Mechanical and Wear Properties of Al6061 Alloy Nanocomposite Reinforced by CNT - Template - Grown Core – Shell CNT / SiC Nanotubes, Sci. Rep., 2020, 10, p 1–11.

    Article  Google Scholar 

  26. R. Xu, Z. Tan, D. Xiong, G. Fan, Q. Guo, J. Zhang, Y. Su, Z. Li and D. Zhang, Balanced Strength and Ductility in CNT/Al Composites Achieved by Flake Powder Metallurgy via Shift-Speed Ball Milling, Compos. Part A Appl. Sci. Manuf., 2017, 96, p 57–66.

    Article  CAS  Google Scholar 

  27. A.V. Radhamani, H.C. Lau and S. Ramakrishna, CNT-Reinforced Metal and Steel Nanocomposites: A Comprehensive Assessment of Progress and Future Directions, Compos. Part A Appl. Sci. Manuf., 2018, 114, p 170–187.

    Article  CAS  Google Scholar 

  28. W. Zhou, S. Bang, H. Kurita, T. Miyazaki, Y. Fan and A. Kawasaki, Interface and Interfacial Reactions in Multi-Walled Carbon Nanotube-Reinforced Aluminum Matrix Composites, Carbon, 2016, 96, p 919–928.

    Article  CAS  Google Scholar 

  29. A. Yarahmadi, M. Rajabi, T.T. Noghani and M. Taghiabadi, Synthesis of Aluminum- CNTs Composites Using Double-Pressing Double-Sintering Method (DPDS), J Nanostruct, University of Kashan, 2019, 9(1), p 94–102.

    CAS  Google Scholar 

  30. A. Yarahmadi, M.T. Noghani and M. Rajabi, Effect of Carbon Nanotube Content and Double-Pressing Double-Sintering Method on the Tensile Strength and Bending Strength Behavior of Carbon Nanotube-Reinforced Aluminum Composites, J. Mater. Res., 2016, 31(24), p 3860–3868.

    Article  CAS  Google Scholar 

  31. X.N. Hao, H.P. Zhang, R.X. Zheng, Y.T. Zhang, K. Ameyama and C.L. Ma, Effect of Mechanical Alloying Time and Rotation Speed on Evolution of CNTs/Al-2024 Composite Powders, Trans. Nonferrous Met. Soc. China, 2014, 24, p 2380–2386.

    Article  CAS  Google Scholar 

  32. K. Morsi and A. Esawi, Effect of Mechanical Alloying Time and Carbon Nanotube (CNT) Content on the Evolution of Aluminum (Al)-CNT Composite Powders, J. Mater. Sci., 2007, 42(13), p 4954–4959.

    Article  CAS  Google Scholar 

  33. A. Esawi and K. Morsi, Dispersion of Carbon Nanotubes (CNTs) in Aluminum Powder, Compos. Part A Appl. Sci. Manuf., 2007, 38(2), p 646–650.

    Article  Google Scholar 

  34. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho and R. Saito, Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes, Carbon, 2002, 40, p 2043–2061.

    Article  CAS  Google Scholar 

  35. G. Li, S. Liang and R. Tian, Multi-Walled Carbon Nanotubes Functionalized with a Ultrahigh Fraction of Carboxyl and Hydroxyl Groups by Ultrasound-Assisted Oxidation, J. Mater. Sci., 2016, 51(7), p 3513–3524.

  36. Y. Zhang, Q. Wang and C.S. Ramachandran, Synthesis of Carbon Nanotube Reinforced Aluminum Composite Powder (CNT-Al) by Polymer Pyrolysis Chemical Vapor Deposition (PP-CVD) Coupled High Energy Ball Milling (HEBM) Process, Diam. Relat. Mater., 2020, 104, p 107748.

    Article  CAS  Google Scholar 

  37. J. Liao and M.J. Tan, Mixing of Carbon Nanotubes (CNTs) and Aluminum Powder for Powder Metallurgy Use, Powder Technol., 2011, 208, p 42–48.

    Article  CAS  Google Scholar 

  38. M. Jafari, M.H. Abbasi, M.H. Enayati and F. Karimzadeh, Mechanical Properties of Nanostructured Al2024-MWCNT Composite Prepared by Optimized Mechanical Milling and Hot Pressing Methods, Adv. Powder Technol., 2012, 23, p 205–210.

    Article  CAS  Google Scholar 

  39. L. Wang, H. Choi, J.M. Myoung and W. Lee, Mechanical Alloying of Multi-Walled Carbon Nanotubes and Aluminium Powders for the Preparation of Carbon/Metal Composites, Carbon, 2009, 47, p 3427–3433.

    Article  CAS  Google Scholar 

  40. K. Aristizabal, A. Katzensteiner, A. Bachmaier, F. Mücklich and S. Suárez, Microstructural Evolution during Heating of CNT/Metal Matrix Composites Processed by Severe Plastic Deformation, Sci. Rep., 2020, 10(1), p 2–11.

    Article  Google Scholar 

  41. X. Yang, T. Zou, C. Shi, E. Liu, C. He and N. Zhao, Effect of Carbon Nanotube (CNT) Content on the Properties of in-Situ Synthesis CNT Reinforced Al Composites, Mater. Sci. Eng. A, 2016, 660, p 11–18.

    Article  CAS  Google Scholar 

  42. S. Shahsavar, M. Ketabchi, S. Bagherzadeh, S.K. Smart, W.C. Ren, H.M. Cheng, G.Q. Lu, D.J. Martin, S. Simões, F. Viana, M.A.L. Reis and M.F. Vieira, Influence of Dispersion/Mixture Time on Mechanical Properties of Al-CNTs Nanocomposites, Int. J. Nanotechnol., 2007, 4(5), p 114–122.

    Google Scholar 

  43. H.J. Choi, J.H. Shin and D.H. Bae, The Effect of Milling Conditions on Microstructures and Mechanical Properties of Al/MWCNT Composites, Compos. Part A Appl. Sci. Manuf., 2012, 43(7), p 1061–1072.

  44. C.O. Ujah, A.P.I. Popoola, O.M. Popoola and V.S. Aigbodion, Influence of CNTs Addition on the Mechanical, Microstructural, and Corrosion Properties of Al Alloy Using Spark Plasma Sintering Technique, Int. J. Adv. Manuf. Technol., 2020, 106(7), p 2961–2969.

  45. V.A. Nguyen, H.T. Bui, D.C. Le, D.P. Doan and N.M. Phan, A Method to Obtain Homogeneously Dispersed Carbon Nanotubes in Al Powders for Preparing Al/CNTs Nanocomposite, Adv. Nat. Sci. Nanosci. Nanotechnol., 2013, 4(2), p 025015.

    Article  Google Scholar 

  46. S. Thomas and V. Umasankar, Effect of MWCNT Reinforcement on the Precipitation-Hardening Behavior of AA2219, Int. J. Miner. Metall. Mater., 2018, 25, p 53–61.

    Article  CAS  Google Scholar 

  47. V. Yadav and S.P. Harimkar, Microstructure and Properties of Spark Plasma Sintered Carbon Nanotube Reinforced Aluminum Matrix Composites, Adv. Eng. Mater., 2011, 13(12), p 1128–1134.

    Article  CAS  Google Scholar 

  48. M. Zhou, X. Qu, L. Ren, L. Fan, Y. Zhang, Y. Guo, G. Quan, Q. Tang, B. Liu and H. Sun, The Effects of Carbon Nanotubes on the Mechanical and Wear Properties of AZ31 Alloy, Materials (Basel), 2017, 10(12), p 1385.

    Article  Google Scholar 

  49. L. Shahrdami, A. Sedghi and M.H. Shaeri, Microstructure and Mechanical Properties of Al Matrix Nanocomposites Reinforced by Different Amounts of CNT and SiC W, Compos. Part B, 2019, 175, p 107081.

    Article  CAS  Google Scholar 

  50. U. Abdullahi, M.A. Maleque and M.Y. Ali, Hardness Behaviour of Carbon Nanotube-Aluminium Nano-Composite Using Nanoindentation Technique, Today Proc Mater, 2020 https://doi.org/10.1016/j.matpr.2020.03.333

    Article  Google Scholar 

  51. D. Lahiri, S.R. Bakshi, A.K. Keshri, Y. Liu and A. Agarwal, Dual Strengthening Mechanisms Induced by Carbon Nanotubes in Roll Bonded Aluminum Composites, Mater. Sci. Eng. A, 2009, 523(1–2), p 263–270.

    Article  Google Scholar 

  52. S.R. Bakshi, V. Singh, S. Seal and A. Agarwal, Aluminum Composite Reinforced with Multiwalled Carbon Nanotubes from Plasma Spraying of Spray Dried Powders, Surf. Coatings Technol., 2009, 203, p 1544–1554.

    Article  CAS  Google Scholar 

  53. B. Chen, J. Shen, X. Ye, L. Jia, S. Li, J. Umeda, M. Takahashi and K. Kondoh, Length Effect of Carbon Nanotubes on the Strengthening Mechanisms in Metal Matrix Composites, Acta Mater., 2017, 140, p 317–325.

    Article  CAS  Google Scholar 

  54. M. Jagannatham, P. Chandran, S. Sankaran, P. Haridoss, N. Nayan and S.R. Bakshi, Tensile Properties of Carbon Nanotubes Reinforced Aluminum Matrix Composites: A Review, Carbon, 2020, 160, p 14–44.

    Article  CAS  Google Scholar 

  55. W. Zhou, T. Yamaguchi, K. Kikuchi, N. Nomura and A. Kawasaki, Effectively Enhanced Load Transfer by Interfacial Reactions in Multi-Walled Carbon Nanotube Reinforced Al Matrix Composites, Acta Mater., 2017, 125, p 369–376.

    Article  CAS  Google Scholar 

  56. P.A. Tarantili, A.G. Andreopoulos and C. Galiotis, Real-Time Micro-Raman Measurements on Stressed Polyethylene Fibers. 1, Strain Rate Effects and Molecular Stress Redistribut. Macromol., 1998, 31, p 6964–6976.

    CAS  Google Scholar 

  57. S.E. Shin and D.H. Bae, Strengthening Behavior of Chopped Multi-Walled Carbon Nanotube Reinforced Aluminum Matrix Composites, Mater. Charact., 2013, 83, p 170–177.

    Article  CAS  Google Scholar 

  58. I. Alfonso, O. Navarro, J. Vargas, A. Beltrán, C. Aguilar, G. González and I.A. Figueroa, FEA Evaluation of the Al4C3 Formation Effect on the Young’s Modulus of Carbon Nanotube Reinforced Aluminum Matrix Composites, Compos. Struct., 2015, 127, p 420–425.

    Article  Google Scholar 

  59. X. Liu, J. Li, E. Liu, Q. Li, C. He, C. Shi and N. Zhao, Effectively Reinforced Load Transfer and Fracture Elongation by Forming Al4C3 for In-Situ Synthesizing Carbon Nanotube Reinforced Al Matrix Composites, Mater. Sci. Eng. A, 2018, 718, p 182–189.

    Article  CAS  Google Scholar 

  60. D.H. Cho, J.H. Nam, B.W. Lee, S.O. Yim and I.M. Park, Thermal Expansion Properties of Carbon Nanotube/Silicon Carbide Particle-Reinforced Magnesium Composites Fabricated by Squeeze Infiltration, Met. Mater. Int., 2016, 22(2), p 332–339.

    Article  CAS  Google Scholar 

  61. L.A. Batista, M.D.V. Felisberto, L.S. Silva, T.H.R. da Cunha and E.M. Mazzer, Influence of Multi-Walled Carbon Nanotubes Reinforcements on Hardness and Abrasion Behaviour of Porous Al-Matrix Composite Processed by Cold Pressing and Sintering, J. Alloys Compd., 2019, 791, p 96–99.

    Article  CAS  Google Scholar 

  62. L. Yan, Z. Tan, G. Ji, Z. Li, G. Fan, D. Schryvers, A. Shan and D. Zhang, A Quantitative Method to Characterize the Al4C3-Formed Interfacial Reaction: The Case Study of MWCNT/Al Composites, Mater. Charact., 2016, 112, p 213–218.

    Article  CAS  Google Scholar 

  63. F. Rikhtegar, S.G. Shabestari and H. Saghafian, Microstructural Evaluation and Mechanical Properties of Al-CNT Nanocomposites Produced by Different Processing Methods, J. Alloys Compd., 2017, 723, p 633–641.

    Article  CAS  Google Scholar 

  64. N.Y. Li, C. Yang, C.J. Li, H.D. Guan, D. Fang, J.M. Tao, Y.C. Liu and J.H. Yi, Carbon Nanotubes Reinforced Aluminum Matrix Composites with High Elongation Prepared by Flake Powder Metallurgy, Diam. Relat. Mater., 2020, 107, p 107907.

    Article  CAS  Google Scholar 

  65. T. Laha, A. Agarwal, T. Mckechnie and S. Seal, Synthesis and Characterization of Plasma Spray Formed Carbon Nanotube Reinforced Aluminum Composite, Mater. Sci. Eng. A, 2004, 381, p 249–258.

    Article  Google Scholar 

  66. J.Z. Liao, M.J. Tan and I. Sridhar, Spark Plasma Sintered Multi-Wall Carbon Nanotube Reinforced Aluminum Matrix Composites, Mater. Des., 2010, 31, p S96–S100.

    Article  CAS  Google Scholar 

  67. M.M.H. Bastwros, A.M.K. Esawi and A. Wi, Friction and Wear Behavior of Al – CNT Composites, Wear, 2013, 307, p 164–173.

    Article  CAS  Google Scholar 

  68. K. Morsi, A.M.K. Esawi, S. Lanka, A. Sayed and M. Taher, Spark Plasma Extrusion (SPE) of Ball-Milled Aluminum and Carbon Nanotube Reinforced Aluminum Composite Powders, Compos. Part A, 2010, 41(2), p 322–326.

    Article  Google Scholar 

  69. M.R. Akbarpour and A. Pouresmaeil, The influence of CNTs on the Microstructure and Strength of Al-CNT Composites Produced by Flake Powder Metallurgy and Hot Pressing Method, Diam. Relat. Mater., 2018, 88, p 6–11.

    Article  CAS  Google Scholar 

  70. C.F. Deng, Y.X. Ma, P. Zhang, X.X. Zhang and D.Z. Wang, Thermal Expansion Behaviors of Aluminum Composite Reinforced with Carbon Nanotubes, Mater. Lett, 2008, 62, p 2301–2303.

    Article  CAS  Google Scholar 

  71. D. Chunfeng, X. ZHANG, M.A. Yanxia, and W. Dezun, Fabrication of Aluminum Matrix Composite Reinforced with Carbon Nanotubes. Rare Met, (2007) 26 450–455.

Download references

Acknowledgments

The authors would like to acknowledge Semnan and Arak Universities labs for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Abdoos.

Ethics declarations

Conflict of interest

It is confirmed that there are no known conflicts of interest associated with this paper. All of the sources of funding for the work are acknowledged in the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: In the originally published article, Reference 31 and Reference 36 denoted the same journal article. Accordingly, Reference 36 has been deleted from the reference list and the in-text citations have been renumbered accordingly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarahmadi, A., Mohammadian Semnani, H. & Abdoos, H. Simultaneous Effects of Carbon Nanotube Content and Diameter Size on Microstructure and Mechanical Properties of Double Pressed Double Sintered Al/Carbon Nanotube Nanocomposites. J. of Materi Eng and Perform 31, 7423–7435 (2022). https://doi.org/10.1007/s11665-022-06798-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06798-1

Keywords

Navigation