Skip to main content
Log in

Microstructure, Fracture Behavior, and Mechanical and Frictional Properties of Ti(C0.7N0.3)-Based Cermets Containing Graphene

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Multilayer graphene as an extra carbon source was introduced into a Ti(C0.7N0.3)-based cermet, and the microstructure, fracture performance, and mechanical and frictional properties of the cermet were investigated in the current work. The results suggested that the number of undissolved Ti(C0.7N0.3) phases (dark cores) was reduced in the microstructure, while the (Ti, W, Mo) (C, N) solid solutions with more W and Mo but less Ti (bright cores) increased as the graphene content increased. Moreover, the ratio of the rim ((Ti, W, Mo) (C,N) solid solutions) thickness to the undissolved Ti(C0.7N0.3) core size gradually increased. Some high-carbon areas were found among (Ti, W, Mo) (C, N) solid solution rims when no less than 1.5 wt.% graphene was added, and it was finally confirmed that these high-carbon areas contained more graphene. When 0.75 wt.% graphene was added, the cermet with a moderate rim thickness and small dark cores had the highest flexure strength and hardness. The cermet containing excessive graphene had a high-volume fraction of high-carbon areas, and cracks propagated easily through these areas, leading to lower fracture toughness. The appropriate addition of graphene can reduce the friction coefficient and wear rate of Ti(C0.7N0.3)-based cermets at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C. Liu, N. Lin and Y.H. He, Influence of Mo2C and TaC Additions on the Microstructure and Mechanical Properties of Ti(C, N)-Based Cermets, Ceram Int., 2016, 42(2), p 3569–3574. https://doi.org/10.1016/j.ceramint.2015.10.168

    Article  CAS  Google Scholar 

  2. S.M. Rafiaei, J. Kim and S. Kang, Effect of Nitrogen and Secondary Carbide on the Microstructure and Properties of (Ti0.93W0.07)C–Ni Cermets, Int. J. Refract. Metals Hard Mater., 2014, 44, p 123–128. https://doi.org/10.1016/j.ijrmhm.2014.02.001

    Article  CAS  Google Scholar 

  3. B. Zhan, N. Liu, Z. Jin, Q. Li and J. Shi, Effect of VC/Cr3C2 on Microstructure and Mechanical Properties of Ti(C, N)-Based Cermets, T Nonferr. Metal Soc., 2012, 22(5), p 1096–1105. https://doi.org/10.1016/S1003-6326(11)61289-2

    Article  CAS  Google Scholar 

  4. H. Yang, Z. Wang, X. Yue, P. Ji and S. Shu, Simultaneously Improved Strength and Toughness of In Situ bi-Phased TiB2–Ti(C, N)–Ni Cermets by Mo Addition, J Alloy Compd., 2020, 820, 153068. https://doi.org/10.1016/j.jallcom.2019.153068

    Article  CAS  Google Scholar 

  5. Z. Cao, N. Jin, J. Ye, D. Zhuang and Y. Liu, The Effects of Nitrogen on the Stability, Elastic Properties and Electronic Structure of Ti(CxN1−x): A First Principles Investigation, Int. J. Refract Metal Hard Mater., 2021, 94, 105382. https://doi.org/10.1016/j.ijrmhm.2020.105382

    Article  CAS  Google Scholar 

  6. S. Tang, D. Liu, P. Li, L. Jiang and Q. Niu, Mechanical Properties and Cutting Performance of TiCN-Based Cermets Fabricated by Spark Plasma Sintering, Int. J. Mach. Mach. Mater., 2018, 20(1), p 90. https://doi.org/10.1504/IJMMM.2018.089475

    Article  Google Scholar 

  7. X. Kang, N. Lin, Y. He and M. Zhang, Influence of ZrC Addition on the Microstructure, Mechanical Properties and Oxidation Resistance of Ti(C, N)-Based Cermets, Ceram Int., 2018, 44(10), p 11151–11159. https://doi.org/10.1016/j.ceramint.2018.03.131

    Article  CAS  Google Scholar 

  8. W. Lengauer and F. Scagnetto, Ti(C, N)-Based Cermets: Critical Review of Achievements and Recent Developments, Solid State Phenom., 2018, 274, p 53–100. https://doi.org/10.4028/www.scientific.net/SSP.274.53

    Article  Google Scholar 

  9. N. Liu, X. Liu, X. Zhang and L. Zhu, Effect of Carbon Content on the Microstructure and Mechanical Properties of Superfine Ti(C, N)-Based Cermets, Mater Charact., 2008, 59(10), p 1440–1446. https://doi.org/10.1016/j.matchar.2008.01.006

    Article  CAS  Google Scholar 

  10. E. Chicardi, Y. Torres, M.J. Sayagués, V. Medri, C. Melandri, J.M. Córdoba et al., Toughening of Complete Solid Solution Cermets by Graphite Addition, Chem Eng J., 2015, 267, p 297–305. https://doi.org/10.1016/j.cej.2015.01.022

    Article  CAS  Google Scholar 

  11. J. Zackrisson and H.O. Andrén, Effect of Carbon Content on the Microstructure and Mechanical Properties of (Ti, W, Ta, Mo)(C, N)–(Co, Ni) Cermets, Int. J. Refract Metal Hard Mater., 1999, 17(4), p 265–273. https://doi.org/10.1016/S0263-4368(98)00074-2

    Article  CAS  Google Scholar 

  12. Y. Li, N. Liu and Y. Li, Carbon Nanotube/Ultrafine Grade Ti(C, N) Based Cermets Composite, Mater Sci Tech-Lond., 2013, 27(8), p 1287–1293. https://doi.org/10.1179/026708309X12506933872829

    Article  CAS  Google Scholar 

  13. S. Luyckx and A.D. Love, Empirical Quantitative Relationships Among Grain Size, Mean Free Path, Contiguity and Cobalt Content in WC-Co Hardmetal, Trans. R. Soc. South Afr., 2003, 58(2), p 145–148. https://doi.org/10.1080/00359190309520469

    Article  Google Scholar 

  14. L. Makhele-Lekala, S. Luyckx and F.R.N. Nabarro, Semi-empirical Relationship Between the Hardness, Grain Size and Mean Free Path of WC–Co, Int. J. Refract Metal Hard Mater., 2001, 19(4–6), p 245–249. https://doi.org/10.1016/S0263-4368(01)00022-1

    Article  CAS  Google Scholar 

  15. G. Liu, R. Li, T. Yuan, M. Zhang and F. Zeng, Spark Plasma Sintering of Pure TiCN: Densification Mechanism, Grain Growth and Mechanical Properties, Int. J. Refract Metal Hard Mater., 2017, 66, p 68–75. https://doi.org/10.1016/j.ijrmhm.2017.02.008

    Article  CAS  Google Scholar 

  16. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari et al., Graphene, Related Two-dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage, Science, 2015, 347(6217), p 1246501. https://doi.org/10.1126/science.1246501

    Article  CAS  Google Scholar 

  17. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao et al., Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8(3), p 902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  Google Scholar 

  18. V.K. Singh, Densification of Alumina and Silica in the Presence of a Liquid Phase, J. Am. Ceram. Soc., 1981, 64(10), p C-133-C–136. https://doi.org/10.1111/j.1151-2916.1981.tb10235.x

    Article  CAS  Google Scholar 

  19. E. Bódis, I. Cora, C. Balázsi, P. Németh, Z. Károly, S. Klébert et al., Spark Plasma Sintering of graphene Reinforced Silicon Carbide Ceramics, Ceram Int., 2017, 43(12), p 9005–9011. https://doi.org/10.1016/j.ceramint.2017.04.042

    Article  CAS  Google Scholar 

  20. M. Gaier, Z.N. Farhat and K.P. Plucknett, The Effects of Graphene Nano-platelet Additions on the Sliding Wear of TiC-Ni3Al Cermets, Tribol Int., 2019, 130, p 119–132. https://doi.org/10.1016/j.triboint.2018.09.015

    Article  CAS  Google Scholar 

  21. Z. Xu, X. Shi, W. Zhai, J. Yao, S. Song and Q. Zhang, Preparation and Tribological Properties of TiAl Matrix Composites Reinforced by Multilayer Graphene, Carbon, 2014, 67, p 168–177. https://doi.org/10.1016/j.carbon.2013.09.077

    Article  CAS  Google Scholar 

  22. T.E. Yang, L. Ni, J. Xiong, R. Shi and Q. Zheng, Flank Wear Mechanism and Tool Endurance of (Ti, W)C-Mo2C-Co Cermets during Dry Turning, Ceram Int., 2018, 44(7), p 8447–8455. https://doi.org/10.1016/j.ceramint.2018.02.040

    Article  CAS  Google Scholar 

  23. P. Lindahl, P. Gustafson, U. Rolander, L. Stals and H.O. Andrén, Microstructure of Model Cermets with High Mo or W Content, Int. J. Refract Metal Hard Mater., 1999, 17(6), p 411–421. https://doi.org/10.1016/S0263-4368(99)00032-3

    Article  CAS  Google Scholar 

  24. Q. Zheng, W. Yao and L. Lim, Ostwald Ripening and Grain Growth in Ti(C, N)-Based Cermets during Liquid Phase Sintering, Int. J. Refract Metal Hard Mater., 2016, 58, p 1–7. https://doi.org/10.1016/j.ijrmhm.2016.03.008

    Article  CAS  Google Scholar 

  25. H. Xiong, Y. Wen, X. Gan, Z. Li and L. Chai, Influence of Coarse TiCN Content on the Morphology and Mechanical Properties of Ultrafine TiCN-Based Cermets, Mater. Sci. Eng., A, 2017, 682, p 648–655. https://doi.org/10.1016/j.msea.2016.11.085

    Article  CAS  Google Scholar 

  26. Y. Zheng, W. Liu, S. Wang and W. Xiong, Effect of Carbon Content on the Microstructure and Mechanical Properties of Ti(C, N)-Based Cermets, Ceram Int., 2004, 30(8), p 2111–2115. https://doi.org/10.1016/j.ceramint.2003.11.016

    Article  CAS  Google Scholar 

  27. W. Zhang, Y. Peng, P. Zhou, W. Chen, Y. Du, W. Xie et al., Experimental Investigation and Computer Simulation of Gradient Zone Formation in WC-Ti(C, N)-TaC-NbC-Co Cemented Carbides, J Phase Equilib Diff., 2013 https://doi.org/10.1007/s11669-013-0225-2

    Article  Google Scholar 

  28. J. Zackrisson, H.O. Andrén and U. Rolander, Development of Cermet Microstructures during Sintering, Metall. and Mater. Trans. A., 2001, 32(1), p 85–94. https://doi.org/10.1007/s11661-001-0104-z

    Article  Google Scholar 

  29. E. Conforto, D. Mari and T. Cutard, The Role of Molybdenum in the Hard-Phase Grains of (Ti, Mo)(C, N)–Co Cermets, Philos Mag., 2004, 84(17), p 1717–1733. https://doi.org/10.1080/14786430310001659516

    Article  CAS  Google Scholar 

  30. Q. Yang, W. Xiong, G. Zhang and B. Huang, Grain Growth in Ti(C, N)-Based Cermets During Liquid-Phase Sintering, J Am Ceram Soc., 2015, 98(3), p 1005–1012. https://doi.org/10.1111/jace.13359

    Article  CAS  Google Scholar 

  31. Y. Li, N. Liu, X. Zhang and C. Rong, Effect of Mo Addition on the Microstructure and Mechanical Properties of Ultra-fine Grade TiC–TiN–WC–Mo2C–Co Cermets, Int. J. Refract Metal Hard Mater., 2008, 26(3), p 190–196. https://doi.org/10.1016/j.ijrmhm.2007.05.005

    Article  CAS  Google Scholar 

  32. G. Östberg, K. Buss, M. Christensen, S. Norgren, H. Andrén, D. Mari et al., Mechanisms of Plastic Deformation of WC–Co and Ti(C, N)–WC–Co, Int. J. Refract Metal Hard Mater., 2006, 24(1–2), p 135–144. https://doi.org/10.1016/j.ijrmhm.2005.04.009

    Article  CAS  Google Scholar 

  33. J. Sun, J. Zhao, F. Gong, Z. Li and X. Ni, Design, Fabrication and Characterization of Multi-layer Graphene Reinforced Nanostructured Functionally Graded Cemented Carbides, J Alloy Compd., 2018, 750, p 972–979. https://doi.org/10.1016/j.jallcom.2018.04.108

    Article  CAS  Google Scholar 

  34. A.V. Shatov, S.S. Ponomarev and S.A. Firstov, Fracture of WC–Ni Cemented Carbides with Different Shape of WC Crystals, Int. J. Refract Metal Hard Mater., 2008, 26(2), p 68–76. https://doi.org/10.1016/j.ijrmhm.2007.03.002

    Article  CAS  Google Scholar 

  35. X. Zeng, J. Teng, J. Yu, A. Tan, D. Fu and H. Zhang, Fabrication of Homogeneously Dispersed Graphene/Al Composites by Solution Mixing and Powder Metallurgy, Int. J. Miner. Metall. Mater., 2018, 25(1), p 102–109. https://doi.org/10.1007/s12613-018-1552-4

    Article  CAS  Google Scholar 

  36. J. Luo and R. Stevens, Porosity-Dependence of Elastic Moduli and Hardness of 3Y-TZP Ceramics, Ceram Int., 1999, 25(3), p 281–286. https://doi.org/10.1016/S0272-8842(98)00037-6

    Article  CAS  Google Scholar 

  37. Y. Fang, X. Zhao, M. Zhang, G. Du, J. Wu, H. Cheng et al., Properties of Ti(C, N)-Based Cermets Reinforced with ZrO2 Whiskers Deposited via Sulfate Flux at High Temperatures, Vacuum, 2021, 191, 110336. https://doi.org/10.1016/j.vacuum.2021.110336

    Article  CAS  Google Scholar 

  38. L. Sun, T.E. Yang, C. Jia and J. Xiong, Effects of Graphite on the Microstructure and Properties of Ultrafine WC-11Co Composites by Spark Plasma Sintering, Rare Met., 2011, 30(1), p 63–67. https://doi.org/10.1007/s12598-011-0198-4

    Article  CAS  Google Scholar 

  39. J. Jung and S. Kang, Effect of Ultra-fine Powders on the Microstructure of Ti(CN)–xWC–Ni Cermets, Acta Mater., 2004, 52(6), p 1379–1386. https://doi.org/10.1016/j.actamat.2003.11.021

    Article  CAS  Google Scholar 

  40. Mishra A. Reduction of Sliding Wear of Alloys by Using Oxides. Int. J. Mech. Eng. Robot. Res., 2014, 3(3), p 598–602. http://www.ijmerr.com/show-124-520-1.html

  41. J. Glascott, F.H. Stott and G.C. Wood, The Effectiveness of Oxides in Reducing Sliding Wear of Alloys, Oxid Met., 1985, 24(3–4), p 99–114. https://doi.org/10.1007/BF00664227

    Article  CAS  Google Scholar 

  42. Y. Fang, Y. Zhang, J. Song, H. Fan and L. Hu, Influence of Structural Parameters on the Tribological Properties of Al2O3/Mo Laminated Nanocomposites, Wear, 2014, 320, p 152–160. https://doi.org/10.1016/j.wear.2014.09.003

    Article  CAS  Google Scholar 

  43. K. Broniszewski, J. Wozniak, K. Czechowski, L. Jaworska and A. Olszyna, Al2O3–Mo Cutting Tools for Machining Hardened Stainless Steel, Wear, 2013, 303(1–2), p 87–91. https://doi.org/10.1016/j.wear.2013.03.002

    Article  CAS  Google Scholar 

  44. Y.G. Zhou, X.T. Zu, F. Gao, H.Y. Xiao and H.F. Lv, Electronic and Magnetic Properties of Graphene Absorbed with S Atom: A First-Principles Study, J Appl Phys., 2009, 105(10), p 104311. https://doi.org/10.1063/1.3130401

    Article  CAS  Google Scholar 

  45. C. Sun, Y. Huang, Q. Shen, W. Wang, W. Pan, P.A. Zong et al., Embedding Two-dimensional Graphene Array in Ceramic Matrix, Sci Adv., 2020 https://doi.org/10.1126/sciadv.abb1338

    Article  Google Scholar 

  46. L. Zhou, J. Xiong, Z. Guo, J. Ye and J. Liu, Tribological Performances of Ti(C, N)-Based Cermets with Different Graphite Contents in Dry Sliding Condition, Int. J. Refract Metal Hard Mater., 2017, 68, p 113–120. https://doi.org/10.1016/j.ijrmhm.2017.07.001

    Article  CAS  Google Scholar 

  47. Q. Gou, J. Xiong, Z. Guo, J. Liu, L. Yang and X. Li, Influence of NbC Additions on Microstructure and Wear Resistance of Ti(C, N)-Based Cermets Bonded by CoCrFeNi High-Entropy Alloy, Int. J. Refract Metal Hard Mater., 2021, 94, p 105375. https://doi.org/10.1016/j.ijrmhm.2020.105375

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China (No. 51634006) and the Sichuan Province Science and Technology Support Program (CN) (2021JDTD0025) supported this work. We also appreciate Hui Wang from the Analytical and Testing Center, Sichuan University, for helping obtain SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianen Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Zheng, Q., Yang, T. et al. Microstructure, Fracture Behavior, and Mechanical and Frictional Properties of Ti(C0.7N0.3)-Based Cermets Containing Graphene. J. of Materi Eng and Perform 31, 7757–7771 (2022). https://doi.org/10.1007/s11665-022-06786-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06786-5

Keywords

Navigation