Skip to main content
Log in

Effect of Al Addition on Electrochemical Behavior of Sn-0.7Cu-xAl Lead-Free Solders Alloys in 3.5 wt.% NaCl Solution

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion behavior of alloys is highly significant as far as lead-free solder applications are concerned. The corrosion performance of the alloy is dependent mainly on the composition of the alloys. In this investigation, the effect of Al adding on the electrochemical behavior of Sn0.7Cu-xAl (x = 0, 1, 2 and 3 wt. percent) lead-free solders has been investigated using electrochemical techniques in neutral 3.5 wt.% NaCl solution at ambient temperature. The influence of aluminum additions on the microstructure of Sn-0.7Cu-xAl lead-free solder alloys was also examined. The microstructure shows that the β-Sn, eutectic and intermetallic compound (IMC) are present in the Sn-Cu-Al solder alloys. At the same time, the addition of aluminum refined the microstructure of the Sn-0.7Cu alloys. Cu6Sn5 is the interfacial IMC at the β-Sn border in the Sn-0.7Cu-xAl, while Al2Cu is the interfacial IMC in the Sn-0.7Cu-xAl. Electrochemical impedance spectroscopy (EIS) results indicate that the corrosion product layer was affected by Al addition, which changed the electrochemical corrosion  behavior from charge transfer to diffusion control. By adding just 1 wt.% of Al to Sn-0.7Cu solder, the microstructure was refined, and corrosion resistance was improved, as shown by decreased corrosion current density (Icorr) and increased total resistance (Rt). Excess Al addition (above 1 wt.%) led to Al-containing IMCs, which were verified as Al2Cu, worsening the corrosion resistance of Sn-0.7Cu-xAl solders. The primary corrosion products were verified as Sn21Cl16(OH)14O6 combined with a small quantity of oxide/chloride of Sn compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Li et al., Corrosion Behavior of Sn-Based Lead-Free Solder Alloys: a Review, J. Mater. Sci. Mater. Electron., 2020, 31(12), p 9076–9090. https://doi.org/10.1007/s10854-020-03540-2

    Article  CAS  Google Scholar 

  2. J.W. Morris, J.L.F. Goldstein and Z. Mei, Microstructure and Mechanical Properties of Sn-In and Sn-Bi Solders, JOM, 1993, 45(7), p 25–27. https://doi.org/10.1007/BF03222376

    Article  CAS  Google Scholar 

  3. Q.K. Zhang, W.M. Long, X.Q. Yu, Y.Y. Pei and P.X. Qiao, Effects of Ga Addition on Microstructure and Properties of Sn-Ag-Cu/Cu Solder Joints, J. Alloys Compd., 2015, 622, p 973–978. https://doi.org/10.1016/j.jallcom.2014.11.030

    Article  CAS  Google Scholar 

  4. M. Lachab, A. Attia and C. Llinares, Study on the Properties of CuInSe, J. Cryst. Growth, 2005, 280(07), p 474–482.

    Article  CAS  Google Scholar 

  5. A.E. Hammad, Enhancement of Creep Resistance and Thermal Behavior of Eutectic Sn-Cu Lead-Free Solder Alloy by Ag and In-Additions, Mater. Des., 2012, 40, p 292–298. https://doi.org/10.1016/j.matdes.2012.04.007

    Article  CAS  Google Scholar 

  6. H. Huang, G. Shuai, X. Wei and C. Yin, Effects of Sulfur Addition on the Wettability and Corrosion Resistance of Sn-0.7Cu Lead-Free Solder, Microelectron. Reliab., 2017, 74, p 15–21. https://doi.org/10.1016/j.microrel.2017.05.010

    Article  CAS  Google Scholar 

  7. E.S. Freitas, W.R. Osório, J.E. Spinelli and A. Garcia, Mechanical and Corrosion Resistances of a Sn-0.7 wt.%Cu Lead-Free Solder Alloy, Microelectron. Reliab., 2014, 54(6–7), p 1392–1400. https://doi.org/10.1016/j.microrel.2014.02.014

    Article  CAS  Google Scholar 

  8. W. Jie, Enhancement on the High-Temperature Joint Reliability and Corrosion, J. Mater. Sci. Mater. Electron., 2018, 29(23), p 19663–19677. https://doi.org/10.1007/s10854-018-0092-z

    Article  CAS  Google Scholar 

  9. V. Singh, D. Jaiswal, D. Pathote, C.K. Behera, Drop calorimetric measurement of In-Zn system for Lead-Free solder applications. Mater Today Proc. 2022. https://doi.org/10.1016/j.matpr.2022.02.601

  10. D. Jaiswal, D. Pathote, V. Singh, C.K. Behera, Electrochemical behaviour of lead-free Sn-In-Al solders alloys in 3.5 wt.% NaCl solution. Mater Today Proc. 2022. Available from: https://linkinghub.elsevier.com/retrieve/pii/S221478532200952X

  11. H. Ma and J. Suhling, A Review of Mechanical Properties of Lead-Free Solders for Electronic Packaging, J. Mater. Sci., 2009, 44, p 1141–1158. https://doi.org/10.1007/s10853-008-3125-9

    Article  CAS  Google Scholar 

  12. L.-C. Tsao, Corrosion Resistance of Pb-free and Novel Nano-Composite Solders in Electronic Packaging, Corros. Resist., 2012 https://doi.org/10.5772/33228

    Article  Google Scholar 

  13. M.R. Kumar, V. Singh, V.K. Rai, D. Jaiswal and C.K. Behera, Investigation on Mixing Heat Effect of bi-in and in-sn System at 730 K, Mater. Today Proc., 2019, 18, p 2917–2923. https://doi.org/10.1016/j.matpr.2019.07.161

    Article  CAS  Google Scholar 

  14. K.K. Zhang, C.Y. Li, R.F. Qiu, H.X. Shi and Y.L. Wang, Effect of Ni on Growing of Intermetallic Compound in Interface of Sn2·5Ag0·7Cu0·1RE/Cu Solder Joint During Aging, Mater. Sci. Technol., 2012, 28(6), p 760–765. https://doi.org/10.1179/1743284711Y.0000000131

    Article  CAS  Google Scholar 

  15. A.E. Hammad, Evolution of Microstructure, Thermal and Creep Properties of Ni-doped Sn-0.5Ag-0.7Cu low-Ag Solder Alloys for Electronic Applications, Mater. Des., 2013, 52, p 663–670. https://doi.org/10.1016/j.matdes.2013.05.102

    Article  CAS  Google Scholar 

  16. V.K. Rai, M.R. Kumar, V. Singh, D. Jaiswal and C.K. Behera, Analysis of Corrosion Behavior and its Characterization of in-sn-bi Alloy, Mater. Today Proc., 2019, 18, p 2322–2328. https://doi.org/10.1016/j.matpr.2019.07.015

    Article  CAS  Google Scholar 

  17. L. Yang, Y. Zhang, J. Dai, Y. Jing, J. Ge and N. Zhang, Microstructure, Interfacial IMC and Mechanical Properties of Sn-0.7Cu-xAl (x=0-0.075) Lead-Free Solder Alloy, Mater. Des., 2015, 67, p 209–216. https://doi.org/10.1016/j.matdes.2014.11.036

    Article  CAS  Google Scholar 

  18. E.S. Freitas, W.R. Osório, J.E. Spinelli and A. Garcia, Microelectronics Reliability Mechanical and Corrosion Resistances of a Sn-0. 7 wt.% Cu Lead-Free Solder Alloy, Microelectron. Reliab., 2014, 54(6–7), p 1392–1400. https://doi.org/10.1016/j.microrel.2014.02.014

    Article  CAS  Google Scholar 

  19. M.F.M. Sabri, D.A. Shnawah, I.A. Badruddin, S.B.M. Said, F.X. Che and T. Ariga, Microstructural Stability of Sn-1Ag-0.5Cu-xAl (x = 1, 1.5, and 2 wt.%) Solder Alloys and the Effects of High-Temperature Aging on their Mechanical Properties, Mater. Charact., 2013, 78, p 129–143. https://doi.org/10.1016/j.matchar.2013.01.015

    Article  CAS  Google Scholar 

  20. L. Yang, Y. Zhang, C. Du, J. Dai and N. Zhang, Effect of Aluminum Concentration on the Microstructure and Mechanical Properties of Sn-Cu-Al Solder Alloy, Microelectron. Reliab., 2015, 55(3–4), p 596–601. https://doi.org/10.1016/j.microrel.2014.12.017

    Article  CAS  Google Scholar 

  21. D.A.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin and F.X. Che, Microstructure, Mechanical, and Thermal Properties of the Sn-1Ag-0.5Cu Solder Alloy Bearing Fe for Electronics Applications, Mater. Sci. Eng. A, 2012, 551, p 160-168. https://doi.org/10.1016/J.MSEA.2012.04.115

    Article  CAS  Google Scholar 

  22. S.C. Chung, J.R. Cheng, S.D. Chiou and H.C. Shih, EIS Behavior of Anodized Zinc in Chloride Environments, Corros. Sci., 2000, 42(7), p 1249–1268. https://doi.org/10.1016/S0010-938X(99)00129-8

    Article  CAS  Google Scholar 

  23. M. Mouanga and P. Berçot, Comparison of Corrosion Behaviour of Zinc in NaCl and in NaOH Solutions; Part II: Electrochemical Analyses, Corros. Sci., 2010, 52(12), p 3993–4000. https://doi.org/10.1016/j.corsci.2010.08.018

    Article  CAS  Google Scholar 

  24. Q. Li, X. Liu and S. Lu, Corrosion Behavior Assessment of Tin-Lead and Lead Free Solders Exposed To Fire Smoke Generated by Burning Polyvinyl Chloride, Mater. Chem. Phys., 2018, 212, p 298–307. https://doi.org/10.1016/j.matchemphys.2018.03.057

    Article  CAS  Google Scholar 

  25. K. Mehrabi, F. Khodabakhshi, E. Zareh, A. Shahbazkhan and A. Simchi, Effect of Alumina Nanoparticles on the Microstructure and Mechanical Durability of Meltspun Lead-Free Solders Based on Tin Alloys, J. Alloys Compd., 2016, 688, p 143–155. https://doi.org/10.1016/J.JALLCOM.2016.06.296

    Article  CAS  Google Scholar 

  26. C.Q. Cheng, F. Yang, J. Zhao, L.H. Wang and X.G. Li, Leaching of Heavy Metal Elements in Solder Alloys, Corros. Sci., 2011, 53(5), p 1738–1747. https://doi.org/10.1016/j.corsci.2011.01.049

    Article  CAS  Google Scholar 

  27. X.D. Lao et al., Corrosion and Leaching Behaviors of Sn-Based Alloy in Simulated Soil Solutions, Trans. Nonferr. Met. Soc. China, 2016, 26(2), p 581–588. https://doi.org/10.1016/S1003-6326(16)64146-8

    Article  CAS  Google Scholar 

  28. U.S. Mohanty and K.L. Lin, Effect of Al on the Electrochemical Corrosion Behaviour of Pb free Sn-8.5 Zn-0.5 Ag-XAl-0.5 Ga Solder in 3.5% NaCl Solution, Appl. Surf. Sci., 2006, 252(16), p 5907–5916. https://doi.org/10.1016/j.apsusc.2005.08.020

    Article  CAS  Google Scholar 

  29. K.L. Lin and T.P. Liu, The Electrochemical Corrosion Behaviour of Pb-Free Al-Zn-Sn Solders in NaCl Solution, Mater. Chem. Phys., 1998, 56(2), p 171–176. https://doi.org/10.1016/S0254-0584(98)00171-0

    Article  CAS  Google Scholar 

  30. G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach and J.H. Sluyters, The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element, J. Electroanal. Chem. Interfacial Electrochem., 1984, 176(1–2), p 275–295. https://doi.org/10.1016/S0022-0728(84)80324-1

    Article  CAS  Google Scholar 

  31. D. Pathote, D. Jaiswal, V. Singh, C.K. Behera. Optimization of electrochemical corrosion behavior of 316L stainless steel as an effective biomaterial for orthopedic applications. Mater Today Proc., 2022, p 1–5. https://doi.org/10.1016/j.matpr.2022.02.501

  32. G.P. Vassilev, X.J. Liu and K. Ishida, Reaction Kinetics and Phase Diagram Studies in the Ti-Zn System, J. Alloys Compd., 2004, 375(1–2), p 162–170. https://doi.org/10.1016/J.JALLCOM.2003.11.026

    Article  CAS  Google Scholar 

  33. F.E. Heakal, A.M. Fekry and A.A. Ghoneim, Corrosion Characterization of New Tin-Silver Binary Alloys in Nitric Acid Solutions, Corros. Sci., 2008, 50(6), p 1618–1626. https://doi.org/10.1016/j.corsci.2008.02.003

    Article  CAS  Google Scholar 

  34. J.C. Liu, G. Zhang, Z.H. Wang, J.Y. Xie, J.S. Ma, K. Suganuma, Electrochemical Behavior of Sn-xZn Lead-Free Solders in Aerated NaCl Solution. 16th International Conference on Electronic Packaging Technology ICEPT 2015, pp. 68–73, 2015, doi: https://doi.org/10.1109/ICEPT.2015.7236547

  35. D. Jaiswal, V. Singh, D. Pathote and C.K. Behera, Electrochemical Behaviour of Lead-Free Sn-0.7Cu-xIn Solders Alloys in 3.5 wt% NaCl Solution, J. Mater. Sci. Mater. Electron., 2021, 32(18), p 23371–23384. https://doi.org/10.1007/s10854-021-06824-3

    Article  CAS  Google Scholar 

  36. D.D. MacDonald, The History of the Point Defect Model for the Passive State: a Brief Review of Film Growth Aspects, Electrochim. Acta, 2011, 56(4), p 1761–1772. https://doi.org/10.1016/J.ELECTACTA.2010.11.005

    Article  CAS  Google Scholar 

  37. Z. Wang, C. Chen, J. Liu, G. Zhang and K. Suganuma, Corrosion Mechanism of Zn-30Sn High-Temperature, Lead-Free Solder in Neutral NaCl Solution, Corros. Sci., 2018, 140(February), p 40–50. https://doi.org/10.1016/j.corsci.2018.06.025

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeraj Jaiswal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, D., Pathote, D., Singh, V. et al. Effect of Al Addition on Electrochemical Behavior of Sn-0.7Cu-xAl Lead-Free Solders Alloys in 3.5 wt.% NaCl Solution. J. of Materi Eng and Perform 31, 7550–7560 (2022). https://doi.org/10.1007/s11665-022-06771-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06771-y

Keywords

Navigation