Skip to main content

Advertisement

Log in

Simultaneously Improving the Corrosion Resistance and Wear Resistance of Internal Surface of Aluminum Pipe by Using Multilayer Diamond-Like Carbon-Si Coatings

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Diamond-like carbon (DLC) coating with high mechanical properties, excellent corrosion and wear resistances is an ideal protective material to enhance the metal pipe internal surface under the condition of corrosion and friction. In the present investigation, compact and uniform multilayer DLC-Si coatings were prepared on the internal surface of 6063 aluminum pipe by hollow cathode plasma-enhanced chemical vapor deposition. Compared with 6063 aluminum pipe, the DLC-Si coatings exhibited better mechanical properties, and its hardness and elastic modulus are 13.7 ± 0.7 GPa and 110 ± 0.9 GPa, respectively. The results of potentiodynamic polarization experiments and neutral salt spray measurements demonstrated that the DLC-Si coatings exhibited better anti-corrosion properties. In particular, the corrosion current density of DLC-Si coating is three orders of magnitude lower than that of the original aluminum pipe. Moreover, the DLC-Si coating fundamentally reduced the friction coefficients and wear rates of aluminum pipe internal surface in the open air, deionized water and PAO 40 Oil. Consequently, the multilayer DLC-Si coating provided by this research effectively improves the service life of 6063 aluminum pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z.S. Asadi and R.E. Melchers, Clustering of Corrosion Pit Depths for Buried Cast Iron Pipes, Corros. Sci., 2018, 140, p 92–98.

    Article  Google Scholar 

  2. J. Awrejcewicz, A.V. Krysko, E.Y. Krylova, T.Y. Yaroshenko, M.V. Zhigalov and V.A. Krysko, Analysis of Flexible Elastic-Plastic Plates/Shells Behaviour Under Coupled Mechanical/Thermal Fields and One-Sided Corrosion Wear, Int. J. Nonlin. Mech., 2020, 118, p 103302.

    Article  Google Scholar 

  3. X.B. Wei, M.L. Zhang, L.L. Shang, Y. Wang, Z.B. Lu and G.G. Zhang, Enhancement in the Corrosive and Tribological Properties of the Inner Wall of 6063Al and Cl Pipes by Thick Multilayer Si-DLC Coatings, Mater. Res. Express., 2019, 6, p 085634.

    Article  CAS  Google Scholar 

  4. A.V. Kolubaev, A.V. Byeli, I.A. Buyanovskii, E.A. Kolubaev, V.A. Kukareko, O.V. Sizova and M.M. Khrushchov, Structure, Deformation, and Fracture of Hard Coatings During Sliding Friction, Russ. Phys. Jour., 2019, 62, p 1363–1397.

    Article  Google Scholar 

  5. M.H. Musazadeh, R. Vafaei, E.M. Sharifi and K. Farmanesh, Mechanical Properties, Microstructural Evolution, and the Effect of Friction on the Plastic Flow of the AISI 321 Austenitic Stainless Steel Tube During Cold Pilgering: An Experimental and Simulation Analysis, Metall. Mater. Trans. B., 2018, 49, p 3030–3042.

    Article  CAS  Google Scholar 

  6. X.J. Cui, C.M. Ning, L.L. Shang, G.A. Zhang and X.Q. Liu, Structure and Anticorrosion, Friction, and Wear Characteristics of Pure Diamond-Like Carbon (DLC), Cr-DLC, and Cr-H-DLC Films on AZ91D Mg Alloy, J. Mater. Eng. Perform., 2019, 28, p 1213–1225.

    Article  CAS  Google Scholar 

  7. S.M. Fayed, D. Chen, S. Li, Y. Zhou and H. Wang, Effect of Bias Voltage on Characteristics of Multilayer Si-DLC Film Coated on AA6061 Aluminum Alloy, J. Mater. Eng. Perform., 2021, 30, p 743–759.

    Article  CAS  Google Scholar 

  8. M. Azzi, P. Amirault, M. Paquette, J.E. Klemberg-Sapieha and L. Martinu, Corrosion Performance and Mechanical Stability of 316L/DLC Coating System: Role of Interlayers, Surf. Coat. Tech., 2010, 204, p 3986–3994.

    Article  CAS  Google Scholar 

  9. G.A. Abbas, S.S. Roy, P. Papakonstantinou and J.A. McLaughlin, Structural Investigation and Gas Barrier Performance of Diamond-Like Carbon Based Films on Polymer Substrates, Carbon, 2005, 43, p 303–309.

    Article  CAS  Google Scholar 

  10. C. Chouquet, G. Gerbaud, M. Bardet, S. Barrat, A. Billard, F. Sanchette and C. Ducros, Structural and Mechanical Properties of a-C: H and Si Doped a-C: H Thin Films Grown by LF-PECVD, Surf. Coat. Tech., 2010, 204, p 1339–1346.

    Article  CAS  Google Scholar 

  11. M.J. Cui, J.B. Pu, G.G. Zhang, L.P. Wang and Q.J. Xue, The Corrosion Behaviors of Multilayer Diamond-Like Carbon Coatings: Influence of Deposition Periods and Corrosive Medium, Rsc. Adv., 2016, 6, p 28570–28578.

    Article  CAS  Google Scholar 

  12. M.J. Cui, J.B. Pu, J. Liang, L.P. Wang, G.G. Zhang and Q.J. Xue, Corrosion and Tribocorrosion Performance of Multilayer Diamond-Like Carbon Film in NaCl Solution, Rsc. Adv., 2015, 5, p 104829–104840.

    Article  CAS  Google Scholar 

  13. G. Dearnaley and J.H. Arps, Biomedical Applications of Diamond-Like Carbon (DLC) Coatings: A Review, Surf. Coat. Tech., 2005, 200, p 2518–2524.

    Article  CAS  Google Scholar 

  14. A.C. Ferrari and J. Robertson, Interpretation of Raman Spectra of Disordered and Amorphous Carbon, Phys. Rev. B., 2000, 61, p 14095–14107.

    Article  CAS  Google Scholar 

  15. M. Sun, S.Z. Yang and B. Li, New Method of Tubular Material Inner Surface Modification by Plasma Source ion Implantation, J. Vac. Sci. Technol. A., 1996, 14, p 367–369.

    Article  CAS  Google Scholar 

  16. W. Ensinger, O. Lensch, T. Kraus, C. Sundermann and B. Enders, Coating the Inner Walls of Metal Tubes with Carbon Films by Physical Vapor Deposition at Low Temperature, Surf. Coat. Tech., 2002, 150, p 227–231.

    Article  CAS  Google Scholar 

  17. R.H. Wei, C. Rincon, T.L. Booker and J.H. Arps, Magnetic Field Enhanced Plasma (MFEP) Deposition of Inner Surfaces of Tubes, Surf. Coat. Tech., 2004, 188, p 691–696.

    Article  Google Scholar 

  18. T.E. Sheridan, T.K. Kwok and P.K. Chu, Kinetic Model for Plasma-Based ion Implantation of a Short, Cylindrical Tube with Auxiliary Electrode, Appl. Phys. Lett., 1998, 72, p 1826–1828.

    Article  CAS  Google Scholar 

  19. D. Lusk, M. Gore, W. Boardman, T. Casserly, K. Boinapally, M. Oppus, D. Upadhyaya, A. Tudhope, M. Gupta, Y. Cao and S. Lapp, Thick DLC Films Deposited by PECVD on the Internal Surface of Cylindrical Substrates, Diam. Relat. Mater., 2008, 17, p 1613–1621.

    Article  CAS  Google Scholar 

  20. Y.Z. Liu, J.X. Ren, S. Cao, G.C. Zhang, Z. Zhang and H.B. Tang, Effect of Low-Frequency Disturbance on the Self-Sustained Discharge of Hollow Cathode, J. Appl. Phys., 2020, 53, p 425205.

    CAS  Google Scholar 

  21. S.N. Andreev, A.V. Bernatskiy and V.N. Ochkin, The Langmuir Probe Measurements in a Low-Pressure Discharge Supported by Hollow Cathode Using the Combined Periodic and Noise Sweep Signals, Vacuum, 2020, 180, p 109616.

    Article  CAS  Google Scholar 

  22. A. Gubal, V. Chuchina, Y. Lyalkin, V. Mikhailovskii, V. Yakobson, N. Solovyev and A. Ganeev, Depth Profiling by Pulsed Glow Discharge Time-of-Flight Mass Spectrometry with a Combined Hollow Cathode Cell, J. Anal. Atom. Spectrom., 2020, 35, p 1587–1596.

    Article  CAS  Google Scholar 

  23. L.G. Kong, M.L. Zhang, X.B. Wei, Y. Wang, G.A. Zhang and Z.G. Wu, Observation of Uniformity of Diamond-Like Carbon Coatings Utilizing Hollow Cathode Discharges Inside Metal Tubes, Surf. Coat. Tech., 2019, 375, p 123–131.

    Article  CAS  Google Scholar 

  24. S.C. Li, F. He, Q. Guo and J.T. Ouyang, Deposition of Diamond-Like Carbon on Inner Surface by Hollow Cathode Discharge, Plasma. Sci. Technol., 2014, 16, p 63–67.

    Article  Google Scholar 

  25. F.O. Kolawole, M.A. Ramirez, S.K. Kolawole, L.B. Varela and A.P. Tschiptschin, Deposition and Characterization of Molybdenum Oxide (MoO3) Nanoparticles Incorporated Diamond-Like Carbon Coatings Using Pulsed-DC PECVD, Mater. Lett., 2020, 278, p 128420.

    Article  CAS  Google Scholar 

  26. A. Dorner-Reisel, A. Engel, C. Schuerer, S. Svoboda and S. Weissmantel, Tribological Behaviour of Femtosecond Laser Micro-patterned Hydrogenated DLC in Dry and Hyaluronic Gel Lubricated Conditions, Surf. Coat. Tech., 2020, 399, p 126082.

    Article  CAS  Google Scholar 

  27. R. Matsui, K. Mori, H. Kousaka and N. Umehara, Observation of Source Gas Depletion in Narrow Metal Tube During Internal Diamond-Like Carbon Coating with Microwaves, Diam. Relat. Mater., 2013, 31, p 72–80.

    Article  CAS  Google Scholar 

  28. M. Metikos-Hukovic and R. Babic, Passivation and Corrosion Behaviours of Cobalt and Cobalt-Chromium-Molybdenum Alloy, Corros. Sci., 2007, 49, p 3570–3579.

    Article  CAS  Google Scholar 

  29. I. Milosev, T. Kosec and H.H. Strehblow, XPS and EIS Study of the Passive Film Formed on Orthopaedic Ti-6Al-7Nb Alloy in Hank’s Physiological Solution, Electrochim. Acta, 2008, 53, p 3547–3558.

    Article  CAS  Google Scholar 

  30. T. Ohana, T. Nakamura, M. Suzuki, A. Tanaka and Y. Koga, Tribological Properties and Characterization of DLC Films Deposited by Pulsed Bias CVD, Diam. Relat. Mater., 2004, 13, p 1500–1504.

    Article  CAS  Google Scholar 

  31. G.H. Song, X.P. Yang, G.L. Xiong, Z. Lou and L.J. Chen, The Corrosive Behavior of Cr/CrN Multilayer Coatings with Different Modulation Periods, Vacuum, 2013, 89, p 136–141.

    Article  CAS  Google Scholar 

  32. M.J. Zhang, G.Z. Wu, Z.B. Lu, L.L. Shang and G.G. Zhang, Corrosion and Wear Behaviors of Si-DLC Films Coated on Inner Surface of SS304 Pipes by Hollow Cathode PECVD, Surf. Topogr-Metrol., 2018, 6, p 034010.

    Article  CAS  Google Scholar 

  33. J. Song, Z. Gao, C. Liu and W. Hu, Corrosion Behavior of WB36CN1 Steel at Different Flow Rates, Anti-Corros. Method. M., 2020, 67, p 519–528.

    Article  CAS  Google Scholar 

  34. G.H. Lv, H. Chen, W.C. Gu, W.R. Feng, L. Li, E.W. Niu, X.-H. Zhang and S.-Z. Yang, Effects of Graphite Additives in Electrolytes on the Microstructure and Corrosion Resistance of Alumina PEO Coatings, Curr. Appl. Phys., 2009, 9, p 324–328.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the financial support from the National Key R&D Program of China (grant number 2018YFB2000605), the Natural Science Foundation of Gansu Province, China (No. 21JR7RA089), and the National Key R&D Program of China (No. 2018YFB0703801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang’an Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Shang, L., Zhang, G. et al. Simultaneously Improving the Corrosion Resistance and Wear Resistance of Internal Surface of Aluminum Pipe by Using Multilayer Diamond-Like Carbon-Si Coatings. J. of Materi Eng and Perform 31, 5622–5629 (2022). https://doi.org/10.1007/s11665-022-06678-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06678-8

Keywords

Navigation