Skip to main content
Log in

Effect of Fused Filament Fabrication Process Parameters on Compressive Strength of Thermoplastic Polyurethane and Polylactic Acid Lattice Structures

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The ability to manufacture customized parts has added a value to Additive Manufacturing (AM) process. The strength of additively manufactured parts largely depends on the process parameters associated with it. The current study is focused on parametric optimization of Fused Filament Fabrication (FFF) process by using Taguchi method for fabrication of lattice structures. Two different material TPU and PLA were chosen for conducting experiments and the impact of three process parameters: layer thickness, infill density and printing speed on the compressive strength of lattice structures was studied. S/N ratio and ANOVA analysis were performed to examine the importance of errors involved in experiments and finding the significance of each parameter. The layer thickness of 0.1 mm, infill density of 100% and printing speed of 40 mm/s was found to be the optimal combination for maximizing the compressive strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.K. Jain, P.M. Pandey and P.V.M. Rao, Effect of Delay Time on Part Strength in Selective Laser Sintering, Int. J. Adv. Manuf. Technol., 2009, 43, p 117–126. https://doi.org/10.1007/s00170-008-1682-3

    Article  Google Scholar 

  2. S.H. Huang, P. Liu, A. Mokasdar and L. Hou, Additive Manufacturing and Its Societal Impact: A Literature Review, Int. J. Adv. Manuf. Technol., 2013, 67, p 1191–1203. https://doi.org/10.1007/s00170-012-4558-5

    Article  Google Scholar 

  3. M. Vaezi, H. Seitz and S. Yang, A Review on 3D Micro-additive Manufacturing Technologies, Int. J. Adv. Manuf. Technol., 2013, 67, p 1721–1754. https://doi.org/10.1007/s00170-012-4605-2

    Article  Google Scholar 

  4. Ye G, Bi H, Chen L, Hu Y. Compression and Energy Absorption Performances of 3D Printed Polylactic Acid Lattice Core Sandwich Structures. 3D Print Addit. Manuf. 6:333–43 (2019). https://doi.org/10.1089/3dp.2019.0068.

  5. N. Kumar, P.K. Jain, P. Tandon and P.M. Pandey, The Effect of Process Parameters on Tensile Behavior of 3D Printed Flexible Parts of Ethylene Vinyl Acetate (EVA), J. Manuf. Process., 2018, 35, p 317–326. https://doi.org/10.1016/j.jmapro.2018.08.013

    Article  Google Scholar 

  6. K. Ushijima, W.J. Cantwell, R.A.W. Mines, S. Tsopanos and M. Smith, An Investigation into the Compressive Properties of Stainless Steel Micro-lattice Structures, J. Sandw. Struct. Mater., 2011, 13, p 303–329. https://doi.org/10.1177/1099636210380997

    Article  CAS  Google Scholar 

  7. M. Dawoud, I. Taha and S.J. Ebeid, Mechanical Behaviour of ABS: An Experimental Study Using FDM and Injection Moulding Techniques, J. Manuf. Process., 2016, 21, p 39–45. https://doi.org/10.1016/j.jmapro.2015.11.002

    Article  Google Scholar 

  8. L.J. Gibson, Cellular Solids: Structure, Properties and Applications, Spring Term, 2011, 2011(595), p 7107.

    Google Scholar 

  9. S. Yu, J. Sun and J. Bai, Investigation of Functionally Graded TPMS Structures Fabricated by Additive Manufacturing, Mater. Des., 2019, 182, 108021. https://doi.org/10.1016/j.matdes.2019.108021

    Article  Google Scholar 

  10. T. Maconachie, R. Tino, B. Lozanovski, M. Watson, A. Jones, C. Pandelidi et al., The Compressive Behaviour of ABS Gyroid Lattice Structures Manufactured by Fused Deposition Modelling, Int. J. Adv. Manuf. Technol., 2020, 107, p 4449–4467. https://doi.org/10.1007/s00170-020-05239-4

    Article  Google Scholar 

  11. C. Li, H. Lei, Z. Zhang, X. Zhang, H. Zhou, P. Wang et al., Architecture Design of Periodic Truss-Lattice Cells for Additive Manufacturing, Addit. Manuf., 2020, 34, 101172. https://doi.org/10.1016/j.addma.2020.101172

    Article  Google Scholar 

  12. T.E.L. Douglas, U. Hempel, J. Żydek, A. Vladescu, K. Pietryga, J.A.H. Kaeswurm et al., Pectin Coatings on Titanium Alloy Scaffolds Produced by Additive Manufacturing: Promotion of Human Bone Marrow Stromal Cell Proliferation, Mater. Lett., 2018, 227, p 225–228. https://doi.org/10.1016/j.matlet.2018.05.060

    Article  CAS  Google Scholar 

  13. T. Niendorf, F. Brenne and M. Schaper, Lattice Structures Manufactured by SLM: On the Effect of Geometrical Dimensions on Microstructure Evolution During Processing, Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci., 2014, 45, p 1181–1185. https://doi.org/10.1007/s11663-014-0086-z

    Article  CAS  Google Scholar 

  14. K. Kadirgama, W.S.W. Harun, F. Tarlochan, M. Samykano, D. Ramasamy, M.Z. Azir et al., Statistical and Optimize of Lattice Structures with Selective Laser Melting (SLM) of Ti6AL4V Material, Int. J. Adv. Manuf. Technol., 2018, 97, p 495–510. https://doi.org/10.1007/s00170-018-1913-1

    Article  Google Scholar 

  15. Q. Feng, Q. Tang, Y. Liu, R. Setchi, S. Soe, S. Ma et al., Quasi-Static Analysis of Mechanical Properties of Ti6Al4V Lattice Structures Manufactured Using Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2018, 94, p 2301–2313. https://doi.org/10.1007/s00170-017-0932-7

    Article  Google Scholar 

  16. S.F. Costa, F.M. Duarte and J.A. Covas, Estimation of Filament Temperature and Adhesion Development in Fused Deposition Techniques, J. Mater. Process. Technol., 2017, 245, p 167–179. https://doi.org/10.1016/j.jmatprotec.2017.02.026

    Article  Google Scholar 

  17. O.A. Mohamed, S.H. Masood and J.L. Bhowmik, Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects, Adv. Manuf., 2015, 3, p 42–53. https://doi.org/10.1007/s40436-014-0097-7

    Article  CAS  Google Scholar 

  18. J. Nagendra and M.S.G. Prasad, FDM Process Parameter Optimization by Taguchi Technique for Augmenting the Mechanical Properties of Nylon-Aramid Composite Used as Filament Material, J. Inst. Eng. Ser. C, 2020, 101, p 313–322. https://doi.org/10.1007/s40032-019-00538-6

    Article  Google Scholar 

  19. M. Samykano, S.K. Selvamani, K. Kadirgama, W.K. Ngui, G. Kanagaraj and K. Sudhakar, Mechanical Property of FDM Printed ABS: Influence of Printing Parameters, Int. J. Adv. Manuf. Technol., 2019, 102, p 2779–2796. https://doi.org/10.1007/s00170-019-03313-0

    Article  Google Scholar 

  20. A. Chadha, M.I. Ul Haq, A. Raina, R.R. Singh, N.B. Penumarti and M.S. Bishnoi, Effect of Fused Deposition Modelling Process Parameters on Mechanical Properties of 3D Printed Parts, World J. Eng., 2019, 16, p 550–559. https://doi.org/10.1108/WJE-09-2018-0329

    Article  CAS  Google Scholar 

  21. Dey A, Yodo N. A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics. J. Manuf. Mater. Process. 3 (2019). https://doi.org/10.3390/jmmp3030064.

  22. A.K. Sood, R.K. Ohdar and S.S. Mahapatra, Experimental Investigation and Empirical Modelling of FDM Process for Compressive Strength Improvement, J. Adv. Res., 2012, 3, p 81–90. https://doi.org/10.1016/j.jare.2011.05.001

    Article  CAS  Google Scholar 

  23. T. Nancharaiah, D.R. Raju and V.R. Raju, An Experimental Investigation on Surface Quality and Dimensional Accuracy of FDM Components, Int. J. Emerg. Technol., 2010, 1, p 106–111.

    Google Scholar 

  24. Zaman UK uz, Boesch E, Siadat A, Rivette M, Baqai AA. Impact of Fused Deposition Modeling (FDM) Process Parameters on Strength of Built Parts Using Taguchi’s Design of Experiments. Int. J. Adv. Manuf. Technol.101:1215–26 (2019). https://doi.org/10.1007/s00170-018-3014-6.

  25. W. Wu, P. Geng, G. Li, D. Zhao, H. Zhang and J. Zhao, Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study Between PEEK and ABS, Materials (Basel), 2015, 8, p 5834–5846. https://doi.org/10.3390/ma8095271

    Article  CAS  Google Scholar 

  26. S. Dev and R. Srivastava, Experimental Investigation and Optimization of FDM Process Parameters for Material and Mechanical Strength, Mater. Today Proc., 2019, 26, p 1995–1999. https://doi.org/10.1016/j.matpr.2020.02.435

    Article  CAS  Google Scholar 

  27. C. Tang, J. Liu, Y. Yang, Y. Liu, S. Jiang and W. Hao, Effect of Process Parameters on Mechanical Properties of 3D Printed PLA Lattice Structures, Compos. Part C Open Access, 2020, 3, 100076. https://doi.org/10.1016/j.jcomc.2020.100076

    Article  Google Scholar 

  28. N.A. Rosli, R. Hasan, and M.R. Alkahari. Effect of Process Parameters on the Geometrical Quality of ABS Polymer Lattice Structure, in Proceedings of the SAKURA Symposium on Mechanical Science Engineering 2017 2017, pp. 3–5.

  29. G. Dong, G. Wijaya, Y. Tang and Y.F. Zhao, Optimizing Process Parameters of Fused Deposition Modeling by Taguchi Method for the Fabrication of Lattice Structures, Addit. Manuf., 2018, 19, p 62–72. https://doi.org/10.1016/j.addma.2017.11.004

    Article  Google Scholar 

  30. A. Haryńska, I. Gubanska, J. Kucinska-Lipka, H. Janik. Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology. Polymers (Basel) 2018;10. https://doi.org/10.3390/polym10121304.

  31. U. Kalsoom, P.N. Nesterenko and B. Paull, Recent Developments in 3D Printable Composite Materials, RSC Adv., 2016, 6, p 60355–60371. https://doi.org/10.1039/c6ra11334f

    Article  CAS  Google Scholar 

  32. R.D. Farahani, M. Dubé and D. Therriault, Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications, Adv. Mater., 2016, 28, p 5794–5821. https://doi.org/10.1002/adma.201506215

    Article  CAS  Google Scholar 

  33. D. Abbas, D. Mohammad Othman, H. Basil Ali and C. Author, Effect of Infill Parameter on Compression Property in FDM Process, Int. J. Eng. Res. Appl., 2017, 7, p 16–19. https://doi.org/10.9790/9622-0710021619

    Article  Google Scholar 

  34. Baich L, G M, H M. Impact of Infill Design on Mechanical Strength and Production Cost in Material Extrusion Based Additive Manufacturing 2016.

  35. D. Popescu, A. Zapciu, C. Amza, F. Baciu and R. Marinescu, FDM Process Parameters Influence Over the Mechanical Properties of Polymer Specimens: A Review, Polym. Test., 2018, 69, p 157–166. https://doi.org/10.1016/j.polymertesting.2018.05.020

    Article  CAS  Google Scholar 

  36. J. Tkac, S. Samborski, K. Monkova and H. Debski, Analysis of Mechanical Properties of a Lattice Structure Produced with the Additive Technology, Compos. Struct., 2020, 242, 112138. https://doi.org/10.1016/j.compstruct.2020.112138

    Article  Google Scholar 

  37. Nancharaiah T. Optimization of Process Parameters in FDM Process Using Design of Experiments. Int. J. Emerg. Technol. 2(1):100–2 (2011).

  38. S. Terekhina, I. Skornyakov, T. Tarasova and S. Egorov, Effects of the Infill Density on the Mechanical Properties of Nylon Specimens Made by Filament Fused Fabrication, Technologies, 2019, 7, p 57. https://doi.org/10.3390/technologies7030057

    Article  Google Scholar 

  39. C. Camposeco-Negrete, Optimization of Printing Parameters in Fused Deposition Modeling for Improving Part Quality and Process Sustainability, Int. J. Adv. Manuf. Technol., 2020, 108, p 2131–2147. https://doi.org/10.1007/s00170-020-05555-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant K. Jain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, N., Jain, P.K. Effect of Fused Filament Fabrication Process Parameters on Compressive Strength of Thermoplastic Polyurethane and Polylactic Acid Lattice Structures. J. of Materi Eng and Perform 31, 5973–5982 (2022). https://doi.org/10.1007/s11665-022-06664-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06664-0

Keywords

Navigation