Skip to main content

Advertisement

Log in

Study on Microstructure Evolution and Strengthening and Toughening of Friction Stir Processed AA6082-4%Al3Zr In-Situ Composites

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A study of friction stir processing experiment of Al3Zr/AA6082 in-situ composites is carried out. The moving speed of the welding tool is 100 mm/min, and the rotating speed of the welding tool is 800, 1000, and 1200 rpm, respectively. The microstructure and mechanical properties of the composites after friction stir processing were analyzed. The results show that Friction stir has a significant effect on the microstructure and strength of composites. Friction stir processing of composite materials promotes the grain refinement of matrix metal and makes the reinforcing particles uniformly dispersed. In addition, with the increase of rotating speed, the reinforced particles are broken and refined under the action of stirring pin. The tensile strength of Al3Zr/6082Al composites processed by friction stir at 1200 rpm reaches 224.139 MPa, which is 45% higher than raw metal. The hardness of stir zone increases with the increase of rotating speed, and the highest hardness can reach 72.1 HV at 1200 rpm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Reference

  1. T. Sun, P. Franciosa, M. Sokolov et al., Challenges and Opportunities in Laser Welding of 6xxx High Strength Aluminium Extrusions in Automotive Battery Tray Construction[J], Procedia CIRP, 2020, 94, p 565–570.

    Article  Google Scholar 

  2. L. Jiao, Y. Yang et al., Effects of Plastic Deformation on Microstructure and Superplasticity of the in-situ Al3Ti/2024Al Composites[J], Mater Res Exp, 2018, 5(5), p 056515.

    Article  Google Scholar 

  3. M. Balakrishnan, I. Dinahara, R. Palanivel et al., Influence of Friction Stir Processing on Microstructure and Tensile Behavior of AA6061/ Al3Zr Cast Aluminum Matrix Composites[J], J Manuf Process, 2019, 38(FEB.), p 148–157.

    Article  Google Scholar 

  4. L. Jiao, Y.T. Zhao, J.C. Chen et al., Microstructure and Properties of Al3Zr/2024Al in situ Composites after Forging[J], Rare Metals, 2016, 35(12), p 920–925.

    Article  CAS  Google Scholar 

  5. A. Chauhan and S. Kumar, Impact Strength of Joints of Aluminium Matrix Composite formed Using Friction Stir Welding Technique, Mater Today: Proceed, 2020, 38, p 234–236.

    Google Scholar 

  6. I. Dinaharan and E.T. Akinlabi, Low Cost Metal Matrix Composites Based on Aluminum, Magnesium and Copper Reinforced with Fly Ash Prepared Using Friction Stir Processing, Composit. Communicat., 2018, 9, p 22–26.

    Article  Google Scholar 

  7. L. Hui, J. Lei et al., Effects of Extrusion on Microstructure and Friction Wear Resistance in situ ZrB2/6063Al Aluminum Matrix Composites[J], Rare Metal Mater. Eng., 2017, 46(10), p 3017–3022.

    Google Scholar 

  8. I. Dinaharan, N. Murugan and A. Thangarasu, Development of Empirical Relationships for Prediction of Mechanical and Wear Properties of AA6082 Aluminum Matrix Composites Produced Using Friction Stir Processing, Eng. Sci. Tech., Int. J., 2016, 19(3), p 1132–1144.

    Google Scholar 

  9. R. Geng, S.-Q. Jia, F. Qiu, Q.-L. Zhao and Q.-C. Jiang, Effects of Nanosized TiC and TiB2 Particles on the Corrosion Behavior of Al-Mg-Si Alloy, Corros. Sci., 2020, 167, p 108479.

    Article  CAS  Google Scholar 

  10. H. Li, L. Jiao, P. Lu, et al., Friction and Wear Properties of Plasma Sprayed Cr_3C_2-NiCr/NiAl Composite Coating on CuCo_2Be Alloy at Different Temperatures[J], Rare Metal Mat. Eng., 2018.

  11. R. Guo, Y. Shen et al., Fabrication of Tungsten Particles Reinforced Aluminum Matrix Composites Using Multi-pass Friction Stir Processing: Evaluation of Microstructural, Mechanical and Electrical Behavior[J], Mater. Sci. Eng., A Struct. Mater. Propert., Microstr. Process., 2016, 674, p 504–513.

    Article  Google Scholar 

  12. G. Huang, J. Wu, W. Hou et al., Microstructure, Mechanical Properties and Strengthening Mechanism of Titanium Particle Reinforced Aluminum Matrix Composites Produced by Submerged Friction Stir Processing[J], Mater. Sci. Eng. A, 2018, 734(SEP12), p 353–363.

    Article  CAS  Google Scholar 

  13. J. Li, Y. Li, F. Wang, X. Meng, L. Wan, Z. Dong et al., Friction Stir Processing of High-Entropy Alloy Reinforced Aluminum Matrix Composites for Mechanical Properties Enhancement, Mater. Sci. Eng.: A., 2020, 792, p 139755.

    Article  CAS  Google Scholar 

  14. J. Lei, W. Xiaolu, L. Hui et al., High Strain Rate Superplasticity of in situ Al3Zr / 6063Al Composites[J], Rare Metal Mater. Eng., 2016, 45(11), p 2798–2803.

    Article  Google Scholar 

  15. C.D. Marini, N. Fatchurrohman and Z. Zulkfli, Morphological Study of Friction Stir Processed Aluminium Metal Matrix Composites, Mater. Today: Proceed., 2020, 46, p 17454–1748.

    Google Scholar 

  16. C.D. Marini, N. Fatchurrohman and Z. Zulkfli, Investigation of Wear Performance of Friction Stir Processed Aluminium Metal Matrix Composites, Mater. Today Proceed., 2020, 46, p 1740–1744.

    Article  Google Scholar 

  17. A. Shettigar, M. Herbert and S. Rao, Study on Mechanical and Microstructural Characteristics of Friction Stir Welded Aluminium Matrix Composite - Sciencedirect[J], Mater. Today: Proceed., 2020, 24, p 1183–1189.

    Google Scholar 

  18. A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Çam, A. Simar, A. Gerlich, F. Khodabakhshi, A. Mostafaei, D.P. Field, J.D. Robson, A. Deschamps and P.J. Withers, Friction Stir Welding/ Processing of Metals and Alloys: A Comprehensive Review on Microstructural Evolution, Progr. Mater. Sci., 2020, 117, p 100752.

    Article  Google Scholar 

  19. N. Kashaev, V. Ventzke and G. Çam, Prospects of Laser Beam Welding and Friction Stir Welding Processes for Aluminum Airframe Structural Applications, J. Manuf. Process., 2018, 36, p 571–600.

    Article  Google Scholar 

  20. G. Çam and G. İpekoğlu, Recent Developments in Joining of Aluminium Alloys, Int. J. Adv. Manuf. Technol., 2017, 91, p 1851–1866.

    Article  Google Scholar 

  21. G. Çam, Friction Stir Welded Structural Materials: Beyond Al-Alloys, Int. Mater. Rev., 2011, 56, p 1–48.

    Article  Google Scholar 

  22. Von Strombeck A, Çam G, dos Santos JF, Ventzke V, Koçak M. A Comparison between microstructure, properties, and toughness behavior of power beam and friction stir welds in Al-alloys. Proc. of the TMS 2001 Annual Meeting Aluminum, Automotive and Joining (New Orleans, Louisiana, USA, February 12-14, 2001), eds: S.K. Das, J.G. Kaufman, and T.J. Lienert, pub.: TMS, Warrendale, PA, USA, 2001, p 249-264.

  23. G. İpekoğlu, S. Erim and G. Çam, Investigation into the Influence of Post-Weld Heat Treatment on the Friction Stir Welded AA6061 Al-Alloy Plates with Different Temper Conditions, Metall. Mater. Trans. A, 2014, 45A(2), p 864–877.

    Article  Google Scholar 

  24. G. Çam, G. İpekoğlu and H.T. Serindağ, Effects of Use of Higher Strength Interlayer and External Cooling on Properties of Friction Stir Welded AA6061-T6 Joints, Sci. Technol. Weld. Join., 2014, 19(8), p 715–720.

    Article  Google Scholar 

  25. G. İpekoğlu and G. Çam, Effects of Initial Temper Condition and Postweld Heat Treatment on the Properties of Dissimilar Friction-Stir-Welded Joints Between AA7075 and AA6061 Aluminum Alloys, Metall. Mater. Trans. A, 2014, 45A(7), p 3074–3087.

    Article  Google Scholar 

  26. G. İpekoğlu, B. Gören Kıral, S. Erim and G. Çam, Investigation of the Effect of Temper Condition Friction Stir Weldability of AA7075 Al-Alloy Plates, Mater. Tehnol., 2012, 46(6), p 627–632.

    Google Scholar 

  27. G. Çam, S. Mistikoglu and M. Pakdil, Microstructural and Mechanical Characterization of Friction Stir Butt Joint Welded 63%Cu-37%Zn Brass Plate, Weld. J., 2009, 88(11), p 225–232.

    Google Scholar 

  28. T. Küçükömeroğlu, E. Şentürk, L. Kara, G. İpekoğlu and G. Çam, Microstructural and Mechanical Properties of Friction Stir Welded Nickel-Aluminum Bronze (NAB) Alloy, J. Mater. Eng. Perform. (JMEPEG), 2016, 25(1), p 320–326.

    Article  Google Scholar 

  29. T. Küçükömeroğlu, S.M. Aktarer, G. İpekoğlu and G. Çam, Microstructure and Mechanical Properties of Friction Stir Welded St52 Steel Joints, Int. J. Miner. Metall. Mater., 2018, 25, p 1457–1464.

    Article  Google Scholar 

  30. T. Küçükömeroğlu, S.M. Aktarer, G. İpekoğlu and G. Çam, Mechanical Properties of Friction Stir Welded St 37 and St 44 Steel Joints, Mater. Test., 2018, 60(12), p 1163–1170.

    Article  Google Scholar 

  31. W. Wang, P. Han, P. Peng, T. Zhang, Q. Liu, S.-N. Yuan et al., Friction Stir Processing of Magnesium Alloys: A Review, Acta Metallurgica Sinica (English Letters)., 2019, 33(1), p 43–57.

    Article  CAS  Google Scholar 

  32. S. Selvakumar, I. Dinaharan, R. Palanivel et al., Development of Stainless Steel Particulate Reinforced AA6082 Aluminum Matrix Composites with Enhanced Ductility Using Friction Stir Processing[J], Mater Sci Eng. A, 2017, 685(FEB.8), p 317–326.

    Article  CAS  Google Scholar 

  33. M.S. Khorrami, S. Samadi, Z. Janghorban et al., In-situ Aluminum Matrix Composite Produced by Friction Stir Processing Using FE Particles[J], Mater. Sci. Eng. A, 2015, 641(Aug12), p 380–390.

    Article  Google Scholar 

  34. M. Rahsepar and H. Jarahimoghadam, The Influence of Multipass Friction Stir Processing on the Corrosion Behavior and Mechanical Properties of Zircon-Reinforced al Metal Matrix Composites[J], Mater. Sci. Eng., A, 2016, 671, p 214–220.

    Article  CAS  Google Scholar 

  35. B. Sadeghi, M. Shamanian, F. Ashrafizadeh et al., Friction Stir Processing of Spark Plasma Sintered Aluminum Matrix Composites with Bimodal Micro- and Nano-Sized Reinforcing Al2O3 Particles[J], J. Manuf. Process., 2018, 32, p 412–424.

    Article  Google Scholar 

  36. B.N. Sahoo, F. Khan MD, S. Babu et al., Microstructural Modification and its Effect on Strengthening Mechanism and Yield Asymmetry of in-situ TiC-TiB 2 / AZ91 Magnesium Matrix Composite[J], Mater. Sci. Eng.: A, 2018, 724(MAY2), p 269–282.

    Article  CAS  Google Scholar 

  37. S. Selvakumar, I. Dinaharan, R. Palanivel and B.B. Ganesh, Characterization of Molybdenum Particles Reinforced Al6082 Aluminum Matrix Composites with Improved Ductility Produced Using Friction Stir Processing, Mater. Charact., 2017, 125, p 13–22.

    Article  CAS  Google Scholar 

  38. D. Sethi, U. Acharya, T. Medhi, S. Shekhar and B.S. Roy, Microstructural and Mechanical Property of Friction Stir Welded Al7075/TiB2 Aluminium Matrix Composite, Mater. Today Proceed., 2020, 46, p 9180–9186.

    Article  Google Scholar 

  39. X. Tao, Y. Chang, Y. Guo, W. Li and M. Li, Microstructure and Mechanical Properties of Friction Stir Welded Oxide Dispersion Strengthened AA6063 Aluminum Matrix Composites Enhanced by Post-Weld Heat Treatment, Mater. Sci. Eng., A, 2018, 725, p 19–27.

    Article  CAS  Google Scholar 

  40. P. Vijayavel and V. Balasubramanian, Effect of Pin Profile Volume Ratio on Microstructure and Tensile Properties of Friction Stir Processed Aluminum Based Metal Matrix Composites, J. Alloy. Compd., 2017, 729, p 828–842.

    Article  CAS  Google Scholar 

  41. K. Zhang, Q. He, J.H. Rao, Y. Wang, R. Zhang, X. Yuan et al., Correlation of Textures and Hemming Performance of an AA6XXX Aluminium Alloy, J. Alloy. Comp., 2021, 853, p 157081.

    Article  CAS  Google Scholar 

  42. L. Su, C. Lu, A.A. Gazder, A.A. Saleh, G. Deng, K. Tieu et al., Shear Texture Gradient in AA6061 Aluminum Alloy Processed by Accumulative Roll Bonding with High Roll Roughness, J. Alloy. Compd., 2014, 594, p 12–22.

    Article  CAS  Google Scholar 

  43. Q. Zang, D. Feng, Y.S. Lee et al., Microstructure and Mechanical Properties of Al-7.9Zn-2.7Mg-2.0Cu (wt%) Alloy Strip Fabricated by Twin Roll Casting and Hot Rolling[J], J. Alloy. Comp., 2020, 847, p 156481.

    Article  CAS  Google Scholar 

  44. Q. Zang, H. Chen, Y.S. Lee et al., Improvement of Anisotropic Tensile Properties of Al-79Zn-27Mg-20Cu Alloy Sheets by particle Stimulated Nucleation[J], J. Alloy. Comp., 2020, 828, p 154330.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

(1) This research was financially supported by the National Natural Science Foundation of China, No. 51605206. (2) Postgraduate Research & practice Inovation Program of Jiangsu Province, No.SJCX20_1459. (3) Postgraduate Research & practice Inovation Program of Jiangsu Province, SJCX21_1769.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanpeng Qiao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Qiao, Y., Lu, S. et al. Study on Microstructure Evolution and Strengthening and Toughening of Friction Stir Processed AA6082-4%Al3Zr In-Situ Composites. J. of Materi Eng and Perform 31, 5221–5230 (2022). https://doi.org/10.1007/s11665-022-06652-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06652-4

Keywords

Navigation