Skip to main content

Advertisement

Log in

Synergistic Effect of Amino-Functionalized Multiwalled Carbon Nanotube Incorporated Polyurethane Nanocomposites for High-Performance Smart Materials Applications

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, thermoplastic polyurethane (PU) and its nanocomposites have been synthesized using a chain-growth process without a catalyst. The mixture of dual-functionalized multiwalled carbon nanotubes (FMWCNTs) (amino and acid functionalized) was used to enhance chemical and physical interlinking between carbon filler and PU matrix in nanocomposites. The structure of pre-designed synthesized PU and its nanocomposites were confirmed by Fourier transformed infrared analysis, and the degree of crystallinity was analyzed by x-ray diffraction analysis. Scanning electron microscopy morphologies confirm better interfacial interaction between dual-FMWCNTs and PU matrix with very little aggregation at higher loading amount of filler content. Excellent improved thermal stabilities with increase loading amount of functionalized filler were confirmed by thermal gravimetric analysis (TGA). A significant increase in mechanical property of PU-nanocomposites with 3% filler loading was observed 62.4 MPa relative to 32.4 MPa of neat-PU, respectively. The shape recovery (SR) time of thermally triggered nanocomposites was improved significantly due to the better thermal conduction of dual-FMWCNTs. A prompt fast recovery response in less than 10 seconds was recorded for the nanocomposite sample. According to our best knowledge, a fast recovery time of fewer than 10 seconds will be a good approach for high material smart applications which is not reported till somewhere else.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Wang, R. Zhang, A. Lin, R. Chen, Q. Wu, T. Chen and P. Sun, Molecular Origin of the Shape Memory Properties of Heat-Shrink Crosslinked Polymers as Revealed by Solid-State NMR, Polymer, 2016, 107, p 61–70.

    Article  CAS  Google Scholar 

  2. A. Pinho, C. Buga and A. Piedade, The Chemistry Behind 4D Printing, Appl. Mater. Today, 2020, 19, p 100611.

    Article  Google Scholar 

  3. S. Miao, N. Castro, M. Nowicki, L. Xia, H. Cui, X. Zhou, W. Zhu, S.-J. Lee, K. Sarkar and G. Vozzi, 4D Printing of Polymeric Materials for Tissue and Organ Regeneration, Mater. Today., 2017, 20, p 577–591.

    Article  CAS  Google Scholar 

  4. W. Miao, W. Zou, Y. Luo, N. Zheng, Q. Zhao and T. Xie, Structural Tuning of Polycaprolactone Based Thermadapt Shape Memory Polymer, Polym. Chem., 2020, 11, p 1369–1374.

    Article  CAS  Google Scholar 

  5. C. Zeng, H. Seino, J. Ren and N. Yoshie, Polymers with Multishape Memory Controlled by Local Glass Transition Temperature, ACS Appl. Mater. Interfac., 2014, 6, p 2753–2758.

    Article  CAS  Google Scholar 

  6. A. Bruni, F.G. Serra, A. Deregibus and T. Castroflorio, Shape-Memory Polymers in Dentistry: Systematic Review and Patent Landscape Report, Materials, 2019, 12, p 2216.

    Article  CAS  Google Scholar 

  7. Z. Liu, X. Lan, W. Bian, L. Liu, Q. Li, Y. Liu, J. Leng, Design, Material Properties and Performances of a Smart Hinge Based on Shape Memory Polymer Composites, Comp. Part B: Engg.,2020, 108056

  8. A. Ben Abdallah, F. Gamaoun, A. Kallel and A. Tcharkhtchi, Molecular Weight Influence on Shape Memory Effect of Shape Memory Polymer Blend (Poly (Caprolactone)/Styrene-Butadiene-Styrene), J. Appl. Polym. Sci., 2020, 138, p 49761.

    Article  Google Scholar 

  9. S. Shree, M. Dowds, A. Kuntze, Y.K. Mishra, A. Staubitz and R. Adelung, Self-Reporting Mechanochromic Coating: A Glassfiber Reinforced Polymer Composite that Predicts Impact Induced Damage, Mater. Hori., 2020, 7, p 598–604.

    Article  CAS  Google Scholar 

  10. J. Marx, S. Roth, A. Brouschkin, D. Smazna, Y.K. Mishra, K. Schulte, R. Adelung and B. Fiedler, Tailored Crystalline Width and Wall Thickness of an Annealed 3D Carbon Foam Composites and Their Mechanical Properties, Carbon, 2019, 142, p 60–67.

    Article  CAS  Google Scholar 

  11. S.K. Srivastava and Y.K. Mishra, Nanocarbon Reinforced Rubber Nanocomposites: Detailed Insights About Mechanical, Dynamical Mechanical Properties, Payne, and Mullin Effects, Nanomater., 2018, 8, p 945.

    Article  Google Scholar 

  12. Q. Zhao, H.J. Qi and T. Xie, Recent Progress in Shape Memory Polymer: New Behavior, Enabling Materials, and Mechanistic Understanding, Prog. Polym. Sci., 2015, 49, p 79–120.

    Article  Google Scholar 

  13. J. Leng, X. Lan, Y. Liu and S. Du, Shape-Memory Polymers and Their Composites: Stimulus Methods and Applications, Prog. Polym. Sci, 2011, 56, p p1077-1135.

    Google Scholar 

  14. Y. Liu, H. Du, L. Liu and J. Leng, Shape Memory Polymers and Their Composites in Aerospace Applications: A Review, Smart Mater. Struct., 2014, 23, p 023001.

    Article  CAS  Google Scholar 

  15. M. Ebara, Y. Kotsuchibashi, K. Uto, T. Aoyagi, Y.-J. Kim, R. Narain, N. Idota and J.M. Hoffman, Shape-Memory Materials, Springer, Smart Biomaterialsed., 2014, p 285–373

    Google Scholar 

  16. P.T. Mather, X. Luo and I.A. Rousseau, Shape Memory Polymer Research, Annu. Rev. Mater. Res., 2009, 39, p 445–471.

    Article  CAS  Google Scholar 

  17. A. Pandey, G. Singh, S. Singh, K. Jha, C. Prakash, 3D Printed Biodegradable Functional Temperature-Stimuli Shape Memory Polymer for Customized Scaffoldings, J. Mechan. Behav. Biomed. Mater.,2020. 103781

  18. A. Khan, N. Ahmed, M. Rabnawaz, Covalent Adaptable Network and Self-Healing Materials: Current Trends and Future Prospects in Sustainability, Polym., 2020,p 2027

  19. W. Xu, M. Xiao, L. Yuan, J. Zhang and Z. Hou, Preparation, Physicochemical Properties and Hemocompatibility of Biodegradable Chitooligosaccharide-Based Polyurethane, Polymer, 2018, 10, p 580.

    Article  Google Scholar 

  20. F. Zia, K.M. Zia, M. Zuber, H.B. Ahmad and M. Muneer, Glucomannan Based Polyurethanes: A Critical Short Review of Recent Advances and Future Perspectives, Inter. J. Biolog. Macromole., 2016, 87, p 229–236.

    Article  CAS  Google Scholar 

  21. B. Han, S. Sharma, T.A. Nguyen, L. Li, K.S. Bhat, Fiber-Reinforced Nanocomposites: Fundamentals and Applications, Elsevier, 2020

  22. U. Arif, S. Haider, A. Haider, N. Khan, A.A. Alghyamah, N. Jamila, M.I. Khan, W.A. Almasry and I.-K. Kang, Biocompatible Polymers and their Potential Biomedical Applications: A Review, Current Pharma. Des., 2019, 25, p 3608–3619.

    Article  CAS  Google Scholar 

  23. M. Irfan and M. Seiler, Encapsulation Using Hyperbranched Polymers: From Research and Technologies to Emerging Applications, Indust. Engg. Chem. Res., 2010, 2010(49), p 1169–1196.

    Article  Google Scholar 

  24. S. Ahmed, Y. Cai, M. Ali, S. Khanal and S. Xu, Preparation and Performance of Nanoparticle-Reinforced Chitosan Proton-Exchange Membranes for Fuel-Cell Applications, J. Appl. Polym. Sci., 2019, 136, p 46904.

    Article  Google Scholar 

  25. S. Ahmed, Y. Cai, M. Ali, S. Khannal and S. Xu, Preparation and Properties of Alkyl Benzene Sulfonic Acid Coated Boehmite/Chitosan Nanocomposite Membranes with Enhanced Proton Conductivity for Proton Exchange Membrane Fuel Cells, Mater. Exp., 2019, 9, p 42–50.

    Article  CAS  Google Scholar 

  26. A.P. Kishan, T. Wilems, S. Mohiuddin and E.M. Cosgriff-Hernandez, Synthesis and Characterization of Plug-and-Play Polyurethane Urea Elastomers as Biodegradable Matrixes for Tissue Engineering Applications, ACS Biomat. Sci. & Engg., 2017, 3, p 3493–3502.

    Article  CAS  Google Scholar 

  27. C. Christenson, M. Harthcock, M. Meadows, H. Spell, W. Howard, M. Creswick, R. Guerra and R. Turner, Model MDI/Butanediol Polyurethanes: Molecular Structure, Morphology, Physical and Mechanical Properties, J. Polym. Sci. Part B: Polym. Phys., 1986, 24, p 1401–1439.

    Article  CAS  Google Scholar 

  28. T. Pretsch, I. Jakob and W. Müller, Hydrolytic Degradation and Functional Stability of a Segmented Shape Memory Poly (Ester Urethane), Polym. Degr. Stab., 2009, 2009(94), p 61–73.

    Article  Google Scholar 

  29. S. Ahmed, M. Ali, Y. Cai, Y. Lu, Z. Ahmad, S. Khannal and S. Xu, Novel Sulfonated Multi-Walled Carbon Nanotubes Filled Chitosan Composite Membrane for Fuel-Cell Applications, J. Appl. Polym. Sci., 2019, 136, p 47603.

    Article  Google Scholar 

  30. M.A. Awotunde, A.O. Adegbenjo, O.O. Ayodele, A.M. Okoro, M.B. Shongwe and P.A. Olubambi, Reactive Synthesis of CNTs Reinforced Nickel Aluminide Composites by Spark Plasma Sintering, Mater. Sci. Engg. A, 2020, 796, p 140070.

    Article  CAS  Google Scholar 

  31. C.I. Idumah, I. Nwuzor, S.S. Odera, Recent Advancements in Self-Healing Polymeric Hydrogels, Shape Memory, and Stretchable Materials, Inte. J. Polym. Mater. Polymeric Biomat., 2020. 1-26

  32. C.I. Idumah, S. Odera, Recent Advancement in Self-Healing Graphene Polymer Nanocomposites, Shape Memory, and Coating Materials, Polym.Plast. Tech. Mater.,2020. 1-24

  33. N. Ahmed, B. Niaz, S. Nauman and M.T. Javid, Functionalized Carbon Nanotubes Based Thermo-Responsive Shape Memory Blends with Enhanced Mechanical Properties for Potential Robotics Applications, Iran. Polym. J., 2020, 30, p 67–80.

    Article  Google Scholar 

  34. E. Ciecierska, M. Jurczyk-Kowalska, P. Bazarnik, M. Gloc, M. Kulesza, M. Kowalski, S. Krauze and M. Lewandowska, Flammability, Mechanical Properties and Structure of Rigid Polyurethane Foams with Different Types of Carbon Reinforcing Materials, Comp. Struct., 2016, 140, p 67–76.

    Article  Google Scholar 

  35. T. Subhani, M. Latif, I. Ahmad, S.A. Rakha, N. Ali and A.A. Khurram, Mechanical Performance of Epoxy Matrix Hybrid Nanocomposites Containing Carbon Nanotubes and Nanodiamonds, Mater. Des., 2015, 87, p 436–444.

    Article  CAS  Google Scholar 

  36. M. Dong, Q. Li, H. Liu, C. Liu, E.K. Wujcik, Q. Shao, T. Ding, X. Mai, C. Shen and Z. Guo, Thermoplastic Polyurethane-Carbon Black Nanocomposite Coating: Fabrication and Solid Particle Erosion Resistance, Polymer, 2018, 158, p 381–390.

    Article  CAS  Google Scholar 

  37. A. Radhamani, H.C. Lau and S. Ramakrishna, Structural, Mechanical and Corrosion Properties of CNT-304 Stainless Steel Nanocomposites, Progress in Natural Science: Mater. Inter., 2019, 29, p 595–602.

    Article  CAS  Google Scholar 

  38. N. Ahmed, A. Kausar and B. Muhammad, Shape Memory Properties of Electrically Conductive multi-Walled Carbon nanotube-Filled Polyurethane/Modified Polystyrene Blends, J. Plast. Film & Sheet., 2016, 32, p p272-292.

    Article  Google Scholar 

  39. Z. Akram, A. Kausar and M. Siddiq, Review on Polymer/Carbon Nanotube Composite Focusing Polystyrene Microsphere and Polystyrene Microsphere/Modified CNT Composite: Preparation, Properties, and Significance, Polym.-Plast. Tech. Engg., 2016, 55, p 582–603.

    Article  CAS  Google Scholar 

  40. G. Trovati, E.A. Sanches, S.C. Neto, Y.P. Mascarenhas and G.O. Chierice, Characterization of Polyurethane Resins by FTIR, TGA, and XRD, J. Appl. Polym. Sci., 2010, 115, p 263–268.

    Article  CAS  Google Scholar 

  41. S. Ahmed, Y. Cai, M. Ali, S. Khannal, Z. Ahmad, Y. Lu, S. Wang and S. Xu, One-Step Phosphorylation Of Graphene Oxide for the Fabrication Of Nanocomposite Membranes with Enhanced Proton Conductivity for Fuel Cell Applications, J. Mater. Sci. Mater. Elect., 2019, 30, p 13056–13066.

    Article  CAS  Google Scholar 

  42. Z. Jiang, K. Yuan, S. Li and W. Chow, Study of FTIR Spectra and Thermal Analysis of Polyurethane, Guang pu xue yu guang pu fen xi= Guang pu, 2006, 26, p 624–628.

    CAS  Google Scholar 

  43. S. Ahmed, T. Arshad, A. Zada, A. Afzal, M. Khan, A. Hussain, M. Hassan, M. Ali and S. Xu, Preparation and Characterization of a Novel Sulfonated Titanium Oxide Incorporated Chitosan Nanocomposite Membranes for Fuel Cell Application, Memb., 2021, 11, p 450.

    Article  CAS  Google Scholar 

  44. L. Bistričić, G. Baranović, M. Leskovac and E.G. Bajsić, Hydrogen Bonding and Mechanical Properties of thin Films of Polyether-Based Polyurethane–Silica Nanocomposites, Europ. Polym. J., 2010, 46, p 1975–1987.

    Article  Google Scholar 

  45. M. Hassan, A. Afzal, M. Tariq and S. Ahmed, Synthesis of the Hyper-Branched Polyamides and their Effective Utilization in Adsorption and Equilibrium Isothermal Study for Cadmium ion Uptake, J. Polym. Res., 2021, 28, p 1–11.

    Article  Google Scholar 

  46. K.M. Zia, M. Zuber, M. Barikani, A. Jabbar and M.K. Khosa, XRD Pattern of Chitin Based Polyurethane Bio-Nanocomposites, Carbo. polym., 2010, 80, p 539–543.

    Article  CAS  Google Scholar 

  47. A. Hezma, I. Elashmawi, E. Abdelrazek, A. Rajeh and M. Kamal, Enhancement of the Thermal and Mechanical Properties of Polyurethane/Polyvinyl Chloride Blend by Loading Single Walled Carbon Nanotubes, Progress Nat. Sci. Mater. Inter., 2017, 27, p 338–343.

    Article  CAS  Google Scholar 

  48. M. Raja, A. Shanmugharaj, S.H. Ryu and J. Subha, Influence of Metal Nanoparticle Decorated CNTs on Polyurethane Based Electro Active Shape Memory Nanocomposite Actators, Mater. Chem. Phys., 2011, 129, p 925–931.

    Article  CAS  Google Scholar 

  49. T. Hosseini-Sianaki, H. Nazockdast, B. Salehnia and E. Nazockdast, Microphase Separation and Hard Domain Assembly in Thermoplastic Polyurethane/Multiwalled Carbon Nanotube Nanocomposites, Polym. Engg. Sci., 2015, 55, p 2163–2173.

    Article  CAS  Google Scholar 

  50. P. Visakh and O.B. Nazarenko, Thermal degradation of polymer blends, composites and nanocomposites, Thermal Degradation of Polymer Blends, Springer, Composites and Nanocomposites., 2015, p 1–16

    Book  Google Scholar 

  51. X. Ren, R. Zong, Y. Hu, S. Lo, A.A. Stec and T.R. Hull, Investigation of Thermal Decomposition of Polymer Nanocomposites with Different Char Residues, Polym. Adv. Tech., 2015, 26, p 1027–1033.

    Article  CAS  Google Scholar 

  52. J. Jyoti, B.P. Singh, A.K. Arya and S. Dhakate, Dynamic Mechanical Properties of Multiwall Carbon Nanotube Reinforced ABS Composites and Their Correlation with Entanglement Density, Adhesion, Reinforcement and C Factor, RSC adv., 2016, 6, p 3997–4006.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This funding is supported by the higher education commission (Ref. No. 527/IPFP-II(Batch-I)/SRGP/NAHE/HEC/2020/275). We thank you for the facility support of the Characterization at the National Center for Physics Quaid-i-Azam University Islamabad and institute of space technology Islamabad Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Ahmed.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Iftikhar, F., Farooq, U. et al. Synergistic Effect of Amino-Functionalized Multiwalled Carbon Nanotube Incorporated Polyurethane Nanocomposites for High-Performance Smart Materials Applications. J. of Materi Eng and Perform 31, 5523–5534 (2022). https://doi.org/10.1007/s11665-022-06614-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06614-w

Keywords

Navigation