Skip to main content
Log in

Effect of Cr3C2 Content on Microstructure and Properties of Laser Cladding Ti(C, B)/Ni Coatings

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to solve the problems of low hardness and poor wear resistance of titanium alloy, laser cladding technology was used to prepare Ti(C,B)/Ni coatings with different amount of Cr3C2 on the surface of Ti-6Al-4V titanium alloy. The effects of Cr3C2 content on the microstructure, hardness and wear resistance of Ti(C,B)/Ni coating were investigated by methods of scanning electron microscope (SEM), x-ray diffractometer (XRD), microhardness tester and M-200 wear tester. The results showed that phases existing in coating mainly contain γ-Ni, Ni3Ti, NiTi, TiB2, Ti(C,B) and CrB. With the increase of Cr3C2 content, the size and number of black bulk precipitates in the coating reduced. Meanwhile, the short rod-like Ti(C,B) particles grew and the amount of the particles increased, and Ti(C,B) particles existed in the form of cellular dendritic crystals in the coating. The average microhardness of the cladding layer without Cr3C2 addition is 896.7 HV0.2, which is about 1.5 times higher than that of Ti-6Al-4V substrate (360 HV0.2). With the increase of Cr3C2 content (10, 20, 30 wt.%), the average microhardness of the coating increased to 948.7, 990.4 and 1035.8 HV0.2, respectively. The average hardness of the coating added 30 wt.%Cr3C2 is 15.5% higher than that of the Cr3C2-free coating. At the same time, the wear resistance increased with the increase of Cr3C2 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  1. J.C. Williams and R.R. Boyer, Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components, Metals, 2020, 10(6), p 705–727. https://doi.org/10.3390/met10060705

    Article  Google Scholar 

  2. D.G. Cai, X.T. Zhao, L. Yang et al., A Novel Biomedical Titanium Alloy with High Antibacterial Property and Low Elastic Modulus, J. Mater. Sci. Technol., 2021, 81, p 13–25. https://doi.org/10.1016/j.jmst.2021.01.015

    Article  CAS  Google Scholar 

  3. R. Sahoo, B.B. Jha, T.K. Sahoo et al., Effect of Microstructural Variation on Dry Sliding Wear Behavior of Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2014, 23(6), p 2092–2102. https://doi.org/10.1007/s11665-014-0987-7

    Article  CAS  Google Scholar 

  4. Z.Y. Zhou, X. Bo, S.G. Liu, X.H. Yang, M. Wang and C.F. Wang, Preparation and High Temperature Tribological Properties of Laser Insitu Synthesized Self-Lubricating Composite Coatings Containing Metal sulfides on Ti6Al4V alloy, Appl. Surf. Sci., 2019, 481, p 209–218. https://doi.org/10.1016/j.surfcoat.2021.127664

    Article  CAS  Google Scholar 

  5. Y.H. Zhu, W. Wang, X.Y. Jia et al., Deposition of TiC Film on Titanium for Abrasion Resistant Implant Material by Ion-Enhanced Triode Plasma CVD, Appl. Surf. Sci., 2012, 262, p 156–158. https://doi.org/10.1016/j.apsusc.2012.03.152

    Article  CAS  Google Scholar 

  6. L.Z. Du, C.B. Huang, W.G. Zhang et al., Preparation and Wearperformance of NiCr/Cr3C2-NiCr/hBN Plasma Sprayed Compositecoating, Surf. Coat. Technol., 2011, 205, p 3722–3728. https://doi.org/10.1016/j.surfcoat.2011.01.031

    Article  CAS  Google Scholar 

  7. H. Lee, T. Jang, J. Song, H. Kim and H. Jung, Multi-scale Porous Ti6Al4V Scaffolds with Enhanced Strength and Biocompatibility Formed via Dynamic Freeze-Casting Coupled with Micro-Arc Oxidation, Mater. Lett., 2016, 185, p 21–24. https://doi.org/10.1016/j.matlet.2016.08.075

    Article  CAS  Google Scholar 

  8. H.X. Zhang, H.J. Yu and C.Z. Chen, Microstructure and Wear Resistance of Composite Coating by Laser Cladding Ni60A/B4C Pre-Placed Powders on Ti-6Al-4V Substrate, Sci. Eng. Compos. Mater., 2017, 24(4), p 541–546. https://doi.org/10.1515/secm-2015-0032

    Article  CAS  Google Scholar 

  9. E.M. Birger, G.V. Moskvitin, A.N. Polyakov and V.E. Arkhipov, Industrial Laser Cladding: Current State and Future, Weld. Int., 2011, 25(3), p 234–243. https://doi.org/10.1080/09507116.2010.540880

    Article  Google Scholar 

  10. Y. Zhu, X. Bo, Y.F. Liu, G. Wang, Y. Meng and J. Liang, Development and Characterization of Co-Cu/Ti3SiC2 Self-Lubricating Wear Resistant Composite Coatings on Ti6Al4V Alloy by Laser Cladding, Surf. Coat. Technol., 2021, 424, p 127664. https://doi.org/10.1016/j.apsusc.2019.03.092

    Article  CAS  Google Scholar 

  11. F. Weng, C.Z. Chen and H.J. Yu, Research Status of Laser Cladding on Titanium and its Alloys: A Review, Mater. Des., 2014, 58, p 412–425. https://doi.org/10.1016/j.matdes.2014.01.077

    Article  CAS  Google Scholar 

  12. L.D. Zhu, P.S. Xue, Q. Lan, G.R. Meng, Y. Ren, Z.C. Yang, P.H. Xu and Z. Liu, Recent Research and Development Status of Laser Cladding: A review, Opt. Laser Technol., 2021, 138, p 106915. https://doi.org/10.1016/j.optlastec.2021.106915

    Article  CAS  Google Scholar 

  13. D. Chaliampalias, G. Vourlias, E. Pavlidou et al., Comparative examination of the Microstructure and High Temperature Oxidation Performance of NiCrBSi Flame Sprayed and Pack Cementation Coatings, Appl. Surf. Sci., 2009, 255, p 3605–3612. https://doi.org/10.1016/j.apsusc.2008.10.006

    Article  CAS  Google Scholar 

  14. J. Li, X.J. Zhang, H.P. Wang and M.P. Li, Microstructure and Mechanical Properties of Ni-Based Composite Coatings Reinforced by In Situ Synthesized TiB2 + TiC by laser cladding, Int. J. Miner. Metall. Mater., 2013, 20(1), p 57–64. https://doi.org/10.1007/s12613-013-0693-8

    Article  CAS  Google Scholar 

  15. A.S. Ali, A.H.A. Hussein, A. Nofal et al., A Contribution to Laser Cladding of Ti-6Al-4V Titanium Alloy, Metall. Res. Technol., 2019, 116(6), p 634–646. https://doi.org/10.1051/metal/2019060

    Article  CAS  Google Scholar 

  16. R. Wang, G.L. Zhu, C. Yang et al., Novel Selective Laser Melting Processed In-Situ TiC Particle-Reinforced Ni Matrix Composite with Excellent Processability and Mechanical Properties, Mater. Sci. Eng., 2020, 797, p 140–145. https://doi.org/10.1016/j.msea.2020.140145

    Article  CAS  Google Scholar 

  17. Y.H. Liu. Study on Fabrication and Reinforment Mechanisum of Ni-based Composite Laser Cladding Coating on Ti6Al4V Alloy. East China University of Science and Technology, 2015. (in chinese)

  18. Y. Zhao, T.B. Yu, J.Y. Sun and S.X. Jiang, Microstructure and Properties of Laser Cladded B4C/TiC/Ni-Based Composite Coating, Int. J. Refract. Met. Hard Mater., 2020, 86, p 105–112. https://doi.org/10.1016/j.ijrmhm.2019.105112

    Article  CAS  Google Scholar 

  19. D.M. Li, X.F. Sun, Z.M. LI, W. Song et al., Effect of TiC Content on the Microstructure and Properties of Large-Area Laser-Cladded TiC Ni-Based Composite Coatings, Mater. Res. Express, 2021, 8(2), p 026516. https://doi.org/10.1088/2053-1591/abe54e

    Article  CAS  Google Scholar 

  20. Y. Yuan and Z. Li, Analysis of Nucleation of Carbide (Cr, Fe)(7)C-3 in the Cr3C2/Fe-CrNiBSi Composite Coating, Surf. Coat. Technol., 2013, 228, p 41–47. https://doi.org/10.1016/j.surfcoat.2013.04.002

    Article  CAS  Google Scholar 

  21. X.L. Ping, H.G. Fu et al., Effect of Nb Addition on Microstructure and Properties of Laser Cladding NiCrBSi Coatings, Trans. Inst. Met. Finish, 2018, 96(6), p 304–312. https://doi.org/10.1080/00202967.2018.1502934

    Article  CAS  Google Scholar 

  22. J.M. Drezet, S. Pellerin, C. Bezençon et al., Modelling the Marangoni convection in Laser Heat Treatment, J. Phys., 2004, 120, p 299–306. https://doi.org/10.1051/jp4:2004120034

    Article  CAS  Google Scholar 

  23. L.L. Bai, J. Li, J.L. Chen et al., Effect of the Content of B4C on Microstructural Evolution and Wear Behaviors of the Laser-Clad Coatings Fabricated on Ti6Al4V, Opt. Laser Technol., 2016, 76, p 33–45. https://doi.org/10.1016/j.optlastec.2015.07.010

    Article  CAS  Google Scholar 

  24. T. Chen, W.P. Li, D.F. Liu et al., Effects of Heat Treatment on Microstructure and Mechanical Properties of TiC/TiB Composite Bioinert Ceramic Coatings In-Situ Synthesized By Laser Cladding on Ti6Al4V, Ceram. Int., 2020, 47(1), p 755–768. https://doi.org/10.1016/j.ceramint.2020.08.186

    Article  CAS  Google Scholar 

  25. Y.H. Liu, J.Q. Ding, W.C. Qu et al., Microstructure Evolution of TiC Particles in situ, Synthesized Laser Cladd. Mater., 2017, 10(3), p 1–9. https://doi.org/10.3390/ma10030281

    Article  CAS  Google Scholar 

  26. P.T. Li, Y.Y. Wu and X.F. Liu, Controlled Synthesis of Different Morphologies of TiB2 Microcrystals by Aluminum Melt Reaction Method, Mater. Res. Bull., 2013, 48(6), p 2044–2048. https://doi.org/10.1016/j.materresbull.2013.02.026

    Article  CAS  Google Scholar 

  27. S. Waqar, A. Wadood, A. Mateen et al., Effects of Ni and Cr addition on the Wear Performance of NiTi Alloy, Int. J. Adv. Manuf. Technol., 2020, 108(3), p 625–634. https://doi.org/10.1007/s00170-020-05380-0

    Article  Google Scholar 

  28. J.N. Li, C.Z. Chen, Z.Q. Lin et al., Phase Constituents and Microstructure of Laser Cladding Al2O3/Ti3Al Reinforced Ceramic Layer on Titanium Alloy, J. Alloys Compd., 2011, 509(14), p 4882–4886. https://doi.org/10.1016/j.jallcom.2011.01.199

    Article  CAS  Google Scholar 

  29. X.L. Ping, S.T. Sun, F. Wang and H.G. Fu, Effect of Cr3C2 Addition on the Microstructure and Properties of Laser Cladding NiCrBSi Coatings, Surf. Rev. Lett., 2019, 26(6), p 1850207. https://doi.org/10.1142/S0218625X18502074

    Article  CAS  Google Scholar 

  30. C.C. Qu, J. Li, L.L. Bai et al., Chen Effects of the Thickness of the Pre-Placed Layer on Microstructural Evolution and Mechanical Properties of the Laser-Clad Coatings, J Alloys Compd, 2015, 644, p 450–463. https://doi.org/10.1016/j.jallcom.2015.05.081

    Article  CAS  Google Scholar 

  31. L.J. Xu, W.L. Song, S.Q. Ma et al., Effect of Slippage Rate on Frictional Wear Behaviors of High-Speed Steel with Dual-Scale Tungsten Carbides (M6C) Under High-Pressure Sliding-Rolling condition, Tribol. Int., 2021, 154, p 106719. https://doi.org/10.1016/j.triboint.2020.106719

    Article  CAS  Google Scholar 

  32. K. Wang, D. Du, G. Liu et al., Microstructure and Mechanical Properties of High Chromium Nickel-Based Superalloy Fabricated by Laser Metal Deposition, Mater. Sci. Eng., 2020, 780, p 139185. https://doi.org/10.1016/j.msea.2020.139185

    Article  CAS  Google Scholar 

  33. K. Wang, D. Du, G. Liu et al., High-Temperature Oxidation Behaviour of High Chromium Superalloys Additively Manufactured by Conventional or Extreme High-Speed Laser Metal Deposition, Corros. Sci., 2020, 176, p 108922. https://doi.org/10.1016/j.corsci.2020.108922

    Article  CAS  Google Scholar 

  34. Q. An, L.J. Huang and Y. Jiao, Intergrowth Microstructure and Superior Wear Resistance of (TiB + TiC)/Ti64 Hybrid Coatings by Gas Tungsten Arc Cladding, Mater. Des., 2019, 162, p 33–44. https://doi.org/10.1016/j.matdes.2018.11.039

    Article  CAS  Google Scholar 

  35. Yu. Li Jun and W.H. Zhihui, Wear Behaviors of on (TiB+TiC)/Ti Composite Coating Fabricated on Ti6Al4V by Laser Cladding, Thin Solid Films, 2011, 519(15), p 4804–4808. https://doi.org/10.1016/j.tsf.2011.01.034

    Article  CAS  Google Scholar 

  36. J.F. Archard, Contact and Rubbing of flat Surfaces, J. Appl. Phys., 1953, 24, p 981–988. https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  37. Y.L. Yi, J.D. Xing, L.L. Yu et al., Effect of Casting Thickness on Microstructure, Mechanical Properties and Abrasion Resistance of Fe-B Cast Alloy, Tribol. Int., 2018, 122, p 179–188. https://doi.org/10.1016/j.triboint.2018.02.031

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the financial support for this work from National Natural Science Foundation of China (52075010), and Hebei Science and Technology Major Project (20281002Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Hanguang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunlong, L., Hanguang, F., Zhenguo, X. et al. Effect of Cr3C2 Content on Microstructure and Properties of Laser Cladding Ti(C, B)/Ni Coatings. J. of Materi Eng and Perform 31, 5189–5200 (2022). https://doi.org/10.1007/s11665-022-06604-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06604-y

Keywords

Navigation