Skip to main content
Log in

Microstructure-Based MultiStage Fatigue Modeling of NiTi Alloy Fabricated via Direct Energy Deposition (DED)

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A microstructure-based multistage fatigue (MSF) model was employed to study the process–structure–property relations for cyclic damage and fatigue life of NiTi alloy fabricated via an additive manufacturing (AM) technique. Various defect characteristics (i.e., level of porosity, pore size, and their spacing) and microstructural features (i.e., grain size, mean grain orientation, and misorientation angles), dictated by the manufacturing and post-manufacturing heat treatment processes, were used to predict the fatigue life of AM and wrought NiTi specimens. The specimens fabricated via AM underwent two different heat treatment conditions (i.e., aging followed by air cooling and annealing followed by water quenching). Using the process-dependent parameters, the MSF model could capture the differences in fatigue behavior of each condition. The predicted lower and upper bounds of fatigue life based on the range observed for microstructural features and defect characteristics were able to account for the scatter observed in experimental fatigue data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.I. Stephens, A. Fatemi, R.R. Stephens and H.O. Fuchs, Metal Fatigue in Engineering, 2nd ed. Wiley, Hoboken, 2000.

    Google Scholar 

  2. A. Yadollahi, M.J. Mahtabi, A. Khalili, H.R. Doude, and J.C. Newman, Fatigue Life Prediction of Additively Manufactured Material: Effects of Surface Roughness, Defect Size, and Shape, Fatigue Fract. Eng. Mater. Struct., 2018.

  3. A. Yadollahi, M. Mahmoudi, A. Elwany, H. Doude, L. Bian and J.C. Newman, Fatigue-Life Prediction of Additively Manufactured Material: Effects of Heat Treatment and Build Orientation, Fatigue Fract. Eng. Mater. Struct., 2020, 43(4), p 831–844.

    Article  Google Scholar 

  4. D.L. McDowell, K. Gall, M.F. Horstemeyer and J. Fan, Microstructure-Based Fatigue Modeling of Cast A356–T6 Alloy, Eng. Fract. Mech., 2003, 70(1), p 49–80.

    Article  Google Scholar 

  5. S.H. Seifi, A. Yadollahi, W. Tian, H. Doude, V.H. Hammond and L. Bian, In Situ Nondestructive Fatigue‐Life Prediction of Additive Manufactured Parts by Establishing a Process–Defect–Property Relationship, Advanced Intelligent Systems, 2021, 2000268.

  6. T. Duerig, A. Pelton, and D. Stöckel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, Elsevier, 1999, 273, p 149–160.

  7. A.R. Pelton, J. Dicello, and S. Miyazaki, Optimisation of Processing and Properties of Medical Grade Nitinol Wire, Minim. Invasive Ther. Allied Technol., Taylor & Francis, 2000, 9(2), p 107–118.

  8. K. Gall, H. Sehitoglu, Y.I. Chumlyakov, Y.L. Zuev, and I. Karaman, The Role of Coherent Precipitates in Martensitic Transformations in Single Crystal and Polycrystalline Ti-50.8 At% Ni, Scr. Mater., Pergamon, 1998, 39(6), p 699–705.

  9. S. Saedi, A.S. Turabi, M.T. Andani, C. Haberland, M. Elahinia, and H. Karaca, Thermomechanical Characterization of Ni-Rich NiTi Fabricated by Selective Laser Melting, Smart Mater. Struct., IOP Publishing, 2016, 25(3), p 035005.

  10. M. Nishida, C.M. Wayman, and T. Honma, Precipitation Processes in Near-Equiatomic TiNi Shape Memory Alloys, Metall. Trans. A, Springer, 1986, 17(9), p 1505–1515.

  11. H.E. Karaca, S.M. Saghaian, G. Ded, H. Tobe, B. Basaran, H.J. Maier, R.D. Noebe, and Y.I. Chumlyakov, Effects of Nanoprecipitation on the Shape Memory and Material Properties of an Ni-Rich NiTiHf High Temperature Shape Memory Alloy, Acta Mater., Elsevier, 2013, 61(19), p 7422–7431.

  12. D.M. Keicher and J.E. Smugeresky, The Laser Forming of Metallic Components Using Particulate Materials, 1982, p 51–54.

  13. C. Atwood, M. Griffith, L. Harwell, E. Schlienger, M. Ensz, J. Smugeresky, T. Romero, D. Greene, and D. Reckaway, Laser Engineered Net Shaping (LENSTM): A Tool for Direct Fabrication of Metal Parts, International Congress on Applications of Lasers and Electro-Optics, Laser Institute of America, 1998, p E1–E7.

  14. A. Bagheri, N. Shamsaei, and S.M. Thompson, Microstructure and Mechanical Properties of Ti-6Al-4V Parts Fabricated by Laser Engineered Net Shaping, ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2015, p V02AT02A005

  15. A. Yadollahi and N. Shamsaei, Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities, Int. J. Fatigue, 2017, 98.

  16. N. Shamsaei, A. Yadollahi, L. Bian and S.M. Thompson, An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control, Addit. Manuf., 2015, 8, p 12–35.

    Google Scholar 

  17. J.T. Sehrt and G. Witt, Dynamic Strength and Fracture Toughness Analysis of Beam Melted Parts, Proceedings of the 36th International MATADOR Conference. (Springer, London, 2010), p. 385–388.

  18. H.A. Stoffregen, K. Butterweck, and Eberhard Abele, Fatigue Analysis in Selective Laser Melting: Review and Investigation of Thin-Walled Actuator Housings, Solid Freeform Fabrication Symposium, 2013, p 635–650.

  19. A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, and L. Bian, Effects of Building Orientation and Heat Treatment on Fatigue Behavior of Selective Laser Melted 17-4 PH Stainless Steel, Int. J. Fatigue, 2017, 94.

  20. J. Lee and Y.C. Shin, Effects of Composition and Post Heat Treatment on Shape Memory Characteristics and Mechanical Properties for Laser Direct Deposited Nitinol, Lasers Manuf. Mater. Process., Springer, 2019, 6(1), p 41–58.

  21. M.J. Mahtabi, N. Shamsaei and M. Mitchell, Fatigue of Nitinol: The State-of-the-Art and Ongoing Challenges, J. Mech. Behav. Biomed. Mater., 2015, 50, p 228–254.

    Article  CAS  Google Scholar 

  22. S.W. Robertson, A.R. Pelton, and R.O. Ritchie, Mechanical Fatigue and Fracture of Nitinol, Int. Mater. Rev., Taylor & Francis, 2012, 57(1), p 1–37.

  23. ASTM Standard, B 214-16—Standard Test Method for Sieve Analysis of Metal Powders, 2016.

  24. A. Bagheri, M.J. Mahtabi and N. Shamsaei, Fatigue Behavior and Cyclic Deformation of Additive Manufactured NiTi, J. Mech. Behav. Biomed. Mater., 2018, 1(252), p 440–453.

    Google Scholar 

  25. ASTM Standard, E 606-12—Standard Practice for Strain-Controlled Fatigue Testing, 2012.

  26. A.L. McKelvey and R.O. Ritchie, Fatigue-Crack Propagation in Nitinol, a Shape-Memory and Superelastic Endovascular Stent Material, J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., Wiley Online Library, 1999, 47(3), p 301–308.

  27. K.E. Wilkes and P.K. Liaw, The Fatigue Behavior of Shape-Memory Alloys, Jom, Springer, 2000, 52(10), p 45–51

  28. P. Zhou, J. Zhou, Z. Ye, X. Hong, H. Huang, and W. Xu, Effect of Grain Size and Misorientation Angle on Fatigue Crack Growth of Nanocrystalline Materials, Mater. Sci. Eng. A, Elsevier, 2016, 663, p 1–7.

  29. C. Blochwitz, R. Richter, W. Tirschler, and K. Obrtlik, The Effect of Local Textures on Microcrack Propagation in Fatigued Fcc Metals, Mater. Sci. Eng. A, Elsevier, 1997, 234, p 563–566.

  30. A.S. Azar, L.-E. Svensson, and B. Nyhus, Effect of Crystal Orientation and Texture on Fatigue Crack Evolution in High Strength Steel Welds, Int. J. Fatigue, Elsevier, 2015, 77, p 95–104.

  31. K. Gall, J. Tyber, G. Wilkesanders, S.W. Robertson, R.O. Ritchie, and H.J. Maier, Effect of Microstructure on the Fatigue of Hot-Rolled and Cold-Drawn NiTi Shape Memory Alloys, Mater. Sci. Eng. A, Elsevier, 2008, 486(1–2), p 389–403.

  32. M.J. Mahtabi, N. Shamsaei, and B. Rutherford, Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol Alloys: An Experimental Investigation, Procedia Eng., Elsevier, 2015, 133, p 646–654.

  33. K. Gall and H.J. Maier, Cyclic Deformation Mechanisms in Precipitated NiTi Shape Memory Alloys, Acta Mater., Elsevier, 2002, 50(18), p 4643–4657.

  34. S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys, Metall. Trans. A, Springer, 1986, 17(1), p 115–120.

  35. H. El Kadiri, L. Wang, M.F. Horstemeyer, R.S. Yassar, J.T. Berry, S. Felicelli and P.T. Wang, Phase Transformations in Low-Alloy Steel Laser Deposits, Mater. Sci. Eng. A, 2008, 494(1–2), p 10–20.

    Article  Google Scholar 

  36. D. Catoor, Z. Ma, and S. Kumar, Cyclic Response and Fatigue Failure of Nitinol Under Tension–Tension Loading, J. Mater. Res., Cambridge University Press, 2019, 34(20), p 3504–3522.

  37. M.J. Mahtabi and N. Shamsaei, Fatigue Modeling for Superelastic NiTi Considering Cyclic Deformation and Load Ratio Effects, Shape Mem. Superelasticity, Springer, 2017, 3(3), p 250–263

  38. M.J. Mahtabi and N. Shamsaei, A Modified Energy-Based Approach for Fatigue Life Prediction of Superelastic NiTi in Presence of Tensile Mean Strain and Stress, Int. J. Mech. Sci., Elsevier, 2016, 117, p 321–333.

  39. R.M. Tabanli, N.K. Simha, and B.T. Berg, Mean Strain Effects on the Fatigue Properties of Superelastic NiTi, Metall. Mater. Trans. A, Springer, 2001, 32(7), p 1866–1869.

  40. Y. Xue, D.L. McDowell, M.F. Horstemeyer, M.H. Dale and J.B. Jordon, Microstructure-Based Multistage Fatigue Modeling of Aluminum Alloy 7075–T651, Eng. Fract. Mech., 2007, 74(17), p 2810–2823.

    Article  Google Scholar 

  41. J.B. Jordon, M.F. Horstemeyer, N. Yang, J.F. Major, K.A. Gall, J. Fan, and D.L. McDowell, Microstructural Inclusion Influence on Fatigue of a Cast A356 Aluminum Alloy, Metall. Mater. Trans. A, Springer, 2010, 41(2), p 356–363.

  42. K. Gall, M. Horstemeyer, D.L. McDowell and J. Fan, Finite Element Analysis of the Stress Distributions near Damaged Si Particle Clusters in Cast Al–Si Alloys, Mech. Mater., 2000, 32(5), p 277–301.

    Article  Google Scholar 

  43. D.W. Brown, A. Jain, S.R. Agnew and B. Clausen, Twinning and Detwinning During Cyclic Deformation of Mg Alloy AZ31B, Mater. Sci. Forum, 2007, 539–543, p 3407–3413.

    Article  Google Scholar 

  44. D.R. Hayhurst, F.A. Leckie, and D.L. McDowell, Damage Growth under Nonproportional Loading, Multiaxial fatigue, ASTM International, 1985.

  45. L.H. Rettberg, J.B. Jordon, M.F. Horstemeyer and J.W. Jones, Low-Cycle Fatigue Behavior of Die-Cast Mg Alloys AZ91 and AM60, Metall. Mater. Trans. A, 2012, 43(7), p 2260–2274.

    Article  CAS  Google Scholar 

  46. A.R. Pelton, V. Schroeder, M.R. Mitchell, X.-Y. Gong, M. Barney, and S.W. Robertson, Fatigue and Durability of Nitinol Stents, J. Mech. Behav. Biomed. Mater., Elsevier, 2008, 1(2), p 153–164.

  47. A. Runciman, D. Xu, A.R. Pelton, and R.O. Ritchie, An Equivalent Strain/Coffin–Manson Approach to Multiaxial Fatigue and Life Prediction in Superelastic Nitinol Medical Devices, Biomaterials, Elsevier, 2011, 32(22), p 4987–4993.

  48. J.M. Hughes, M.F. Horstemeyer, R. Carino, N. Sukhija, W.B. Lawrimore, S. Kim, and M.I. Baskes, Hierarchical Bridging between Ab Initio and Atomistic Level Computations: Sensitivity and Uncertainty Analysis for the Modified Embedded-Atom Method (Meam) Potential (Part b), Jom, Springer, 2015, 67(1), p 148–153.

Download references

Acknowledgments

The authors would like to thank the Center for Advanced Vehicular Systems (CAVS) at Mississippi State University for helping support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark F. Horstemeyer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, A., Yadollahi, A., Mahtabi, M.J. et al. Microstructure-Based MultiStage Fatigue Modeling of NiTi Alloy Fabricated via Direct Energy Deposition (DED). J. of Materi Eng and Perform 31, 4761–4775 (2022). https://doi.org/10.1007/s11665-022-06603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06603-z

Keywords

Navigation