Skip to main content
Log in

Investigation of the Effect of Pressureless Microwave Sintering Parameters on the Corrosion Behavior of Pure Iron Biodegradable Scaffolds

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study focuses on the systematic analysis to assess the effect of pressureless microwave sintering parameters (PMS) on the corrosion rate of biodegradable iron (Fe) scaffolds. The Fe scaffolds were fabricated using a novel PMS process in combination with a polymer-based 3D printing process. The present study is the first attempt for employing systematic parametric analysis to evaluate the CR of microwave sintered Fe scaffolds. The fabrication experiments were planned using the central composite design method and parameters selected for the analysis were sintering temperature, heating rate, and soaking time with corrosion rate as a response. The corrosion rate was evaluated using a static immersion test at 37 °C in simulated body fluid solution. The results revealed that the maximum corrosion rate was obtained at 700 °C and with the further increase in sintering temperature, a reduction in the corrosion rate was obtained. The corrosion rate was found to decrease with the increase in soaking time and the increase in heating rate. The variation in sintered density and the existence of pores were the major reason behind this effect. Furthermore, the most significant parameter affecting corrosion rate was soaking time with a contribution of 27.50%. Moreover, an optimization was done to evaluate optimum PMS parameters for achieving maximum and minimum corrosion rate in Fe scaffolds using a genetic algorithm technique. Optimization results revealed that the maximum and minimum corrosion rate in Fe scaffolds were obtained at sintering temperature:700 °C; heating rate: 5 °C min; soaking time: 15 min and sintering temperature:1050 °C; heating rate: 5 °C/min and soaking time: 70 min, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Li, Y. Zheng and L. Qin, Progress of Biodegradable Metals, Prog. Nat. Sci. Mater. Int., 2014, 24, p 414–422. https://doi.org/10.1016/j.pnsc.2014.08.014

    Article  CAS  Google Scholar 

  2. D. Ding, Z. Pan, D. Cuiuri and H. Li, A Tool-Path Generation Strategy for Wire and Arc Additive Manufacturing, Int. J. Adv. Manuf. Technol., 2014, 73, p 173–183. https://doi.org/10.1007/s00170-014-5808-5

    Article  Google Scholar 

  3. H. Hermawan, Updates on the Research and Development of Absorbable Metals for Biomedical Applications, Prog. Biomater., 2018, 7, p 93–110. https://doi.org/10.1007/s40204-018-0091-4

    Article  CAS  Google Scholar 

  4. S. Saito, New Horizon of Bioabsorbable Stent, Catheter. Cardiovasc. Interv., 2005, 66, p 595–596. https://doi.org/10.1002/ccd.20590

    Article  Google Scholar 

  5. A.H. Yusop, A.A. Bakir, N.A. Shaharom, M.R.K. Abdul and H. Hermawan, Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review, Int. J. Biomater., 2012, 2012, p 1–10. https://doi.org/10.1155/2012/641430

    Article  CAS  Google Scholar 

  6. G. Papanikolaou and K. Pantopoulos, Iron Metabolism and Toxicity, Toxicol. Appl. Pharmacol., 2005, 202, p 199–211. https://doi.org/10.1016/j.taap.2004.06.021

    Article  CAS  Google Scholar 

  7. Y. Yun, Z. Dong, N. Lee, Y. Liu, D. Xue, X. Guo, J. Kuhlmann, A. Doepke, H.B. Halsall, W. Heineman, S. Sundaramurthy, M.J. Schulz, Z. Yin, V. Shanov, D. Hurd, P. Nagy, W. Li and C. Fox, Revolutionizing Biodegradable Metals, Mater. Today., 2009, 12, p 22–32. https://doi.org/10.1016/S1369-7021(09)70273-1

    Article  CAS  Google Scholar 

  8. Y.F. Zheng, X.N. Gu and F. Witte, Biodegradable Metals, Mater. Sci. Eng. R Reports., 2014, 77, p 1–34. https://doi.org/10.1016/j.mser.2014.01.001

    Article  Google Scholar 

  9. M. Moravej, F. Prima, M. Fiset and D. Mantovani, Electroformed iron as New Biomaterial for Degradable Stents: Development Process and Structure-Properties Relationship, Acta Biomater., 2010, 6, p 1726–1735. https://doi.org/10.1016/j.actbio.2010.01.010

    Article  CAS  Google Scholar 

  10. F.L. Nie, Y.F. Zheng, S.C. Wei, C. Hu and G. Yang, In vitro Corrosion, Cytotoxicity and Hemocompatibility of Bulk Nanocrystalline Pure Iron, Biomed. Mater., 2010, 5, 065015. https://doi.org/10.1088/1748-6041/5/6/065015

    Article  CAS  Google Scholar 

  11. C.S. Obayi, R. Tolouei, A. Mostavan, C. Paternoster, S. Turgeon, B.A. Okorie, D.O. Obikwelu and D. Mantovani, Effect of Grain Sizes on Mechanical Properties and Biodegradation Behavior of Pure Iron for Cardiovascular Stent Application, Biomatter., 2016, 6, e959874. https://doi.org/10.4161/21592527.2014.959874

    Article  Google Scholar 

  12. J. Čapek, J. Kubásek, D. Vojtěch, E. Jablonská, J. Lipov and T. Ruml, Microstructural, Mechanical, Corrosion and Cytotoxicity Characterization of the Hot Forged FeMn30(wt.%) Alloy, Mater. Sci. Eng. C., 2016, 58, p 900–908. https://doi.org/10.1016/j.msec.2015.09.049

    Article  CAS  Google Scholar 

  13. C.S. Obayi, R. Tolouei, C. Paternoster, S. Turgeon, B.A. Okorie, D.O. Obikwelu, G. Cassar, J. Buhagiar and D. Mantovani, Influence of Cross-Rolling on the Micro-Texture and Biodegradation of Pure Iron as Biodegradable Material for Medical Implants, Acta Biomater., 2015, 17, p 68–77. https://doi.org/10.1016/j.actbio.2015.01.024

    Article  CAS  Google Scholar 

  14. M. Heiden, A. Kustas, K. Chaput, E. Nauman, D. Johnson and L. Stanciu, Effect of Microstructure and Strain on the Degradation Behavior of Novel Bioresorbable Iron-Manganese Alloy Implants, J. Biomed. Mater. Res. Part A., 2015, 103, p 738–745. https://doi.org/10.1002/jbm.a.35220

    Article  CAS  Google Scholar 

  15. T. Huang, Y. Zheng and Y. Han, Accelerating Degradation Rate of Pure Iron by Zinc Ion Implantation, Regen. Biomater., 2016, 3, p 205–215. https://doi.org/10.1093/rb/rbw020

    Article  CAS  Google Scholar 

  16. T. Huang and Y. Zheng, Uniform and Accelerated Degradation of Pure Iron Patterned by Pt Disc Arrays, Sci. Rep., 2016, 6, p 23627. https://doi.org/10.1038/srep23627

    Article  CAS  Google Scholar 

  17. J. Zhou, Y. Yang, M.A. Frank, R. Detsch, A.R. Boccaccini and S. Virtanen, Accelerated Degradation Behavior and Cytocompatibility of Pure Iron Treated with Sandblasting, ACS Appl. Mater. Interfaces., 2016, 8, p 26482–26492. https://doi.org/10.1021/acsami.6b07068

    Article  CAS  Google Scholar 

  18. Y. Li, H. Jahr, K. Lietaert, P. Pavanram, A. Yilmaz, L.I. Fockaert, M.A. Leeflang, B. Pouran, Y. Gonzalez-Garcia, H. Weinans, J.M.C. Mol, J. Zhou and A.A. Zadpoor, Additively Manufactured Biodegradable Porous Iron, Acta Biomater., 2018, 77, p 380–393. https://doi.org/10.1016/j.actbio.2018.07.011

    Article  CAS  Google Scholar 

  19. P. Sharma and P.M. Pandey, Corrosion Behaviour of the Porous Iron Scaffold in Simulated Body Fluid for Biodegradable Implant Application, Mater. Sci. Eng. C., 2019, 99, p 838–852. https://doi.org/10.1016/j.msec.2019.01.114

    Article  CAS  Google Scholar 

  20. P. Sharma and P.M. Pandey, Morphological and Mechanical Characterization of Topologically Ordered Open Cell Porous Iron Foam Fabricated using 3D Printing and Pressureless Microwave Sintering, Mater. Des., 2018, 160, p 442–454. https://doi.org/10.1016/j.matdes.2018.09.029

    Article  CAS  Google Scholar 

  21. P. Sharma and P.M. Pandey, Corrosion Rate Modelling of Biodegradable Porous Iron Scaffold Considering the Effect of Porosity and Pore Morphology, Mater. Sci. Eng. C., 2019, 103, 109776. https://doi.org/10.1016/j.msec.2019.109776

    Article  CAS  Google Scholar 

  22. R. Gorejová, L. Haverová, R. Oriňaková, A. Oriňak and M. Oriňak, Recent Advancements in Fe-based Biodegradable Materials for Bone Repair, J. Mater. Sci., 2019, 54, p 1913–1947. https://doi.org/10.1007/s10853-018-3011-z

    Article  CAS  Google Scholar 

  23. B. Wegener, B. Sievers, S. Utzschneider, P. Müller, V. Jansson, S. Rößler, B. Nies, G. Stephani, B. Kieback, P. Quadbeck, Microstructure, Cytotoxicity and Corrosion of Powder-Metallurgical Iron Alloys for Biodegradable Bone Replacement Materials, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 176 (2011) 1789–1796. https://doi.org/10.1016/j.mseb.2011.04.017.

  24. R. Oriňaková, A. Oriňak, M. Giretová, L. Medvecký, M. Kupková, M. Hrubovčïáková, I. Maskal’Ová, J. MacKo, F. Kal’Avský, A Study of Cytocompatibility and Degradation of Iron-Based Biodegradable Materials, J. Biomater. Appl. 30 (2016) 1060–1070. https://doi.org/10.1177/0885328215615459.

  25. P. Mariot, M.A. Leeflang, L. Schaeffer and J. Zhou, An Investigation on the Properties of Injection-Molded Pure Iron Potentially for Biodegradable Stent Application, Powder Technol., 2016, 294, p 226–235. https://doi.org/10.1016/j.powtec.2016.02.042

    Article  CAS  Google Scholar 

  26. Z. Xu, M.A. Hodgson and P. Cao, A comparative Study of Powder Metallurgical (PM) and Wrought Fe-Mn-Si Alloys, Mater. Sci. Eng. A., 2015, 630, p 116–124. https://doi.org/10.1016/j.msea.2015.02.021

    Article  CAS  Google Scholar 

  27. P. Sharma, P.M. Pandey, Rapid Manufacturing of Biodegradable Pure Iron Scaffold using Amalgamation of Three-Dimensional Printing and Pressureless Microwave Sintering, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233 (2018) 1876–1895. https://doi.org/10.1177/0954406218778304.

  28. P. Sharma and P.M. Pandey, A Novel Manufacturing Route for the Fabrication of Topologically-Ordered Open-Cell Porous Iron Scaffold, Mater. Lett., 2018, 222, p 160–163. https://doi.org/10.1016/j.matlet.2018.03.206

    Article  CAS  Google Scholar 

  29. R. Roy, D. Agrawal and J. Cheng, Full Sintering of Powdered-Metal Bodies in a Microwave Field, Nature, 1999, 399, p 668–670.

    Article  CAS  Google Scholar 

  30. R.M. Anklekar, D.K. Agrawal and R. Roy, Microwave sintering and mechanical properties of PM copper steel, Science, 2001, 44, p 355–362.

    CAS  Google Scholar 

  31. M. Oghbaei and O. Mirzaee, Microwave Versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications, J. Alloys Compd., 2010, 494, p 175–189. https://doi.org/10.1016/j.jallcom.2010.01.068

    Article  CAS  Google Scholar 

  32. K. Saitou, Microwave Sintering of Iron, Cobalt, Nickel, Copper and Stainless Steel Powders, Scr. Mater., 2006, 54, p 875–879. https://doi.org/10.1016/j.scriptamat.2005.11.006

    Article  CAS  Google Scholar 

  33. Z.Z. Fang, Sintering of Advanced Materials, Woodhead Publishing, Cambridge, 2010.

    Book  Google Scholar 

  34. H.F. Fischmeister and R. Zahn, Modern Developments in Powder Metallurgy, Springer, New York, 1996.

    Google Scholar 

  35. ASTM G31-72 (2004). Standard Practice for Laboratory Immersion Corrosion Testing of Metals, 1999. https://doi.org/10.1520/G0031-72R04.

  36. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Pathak, D.K. & Pandey, P.M. Investigation of the Effect of Pressureless Microwave Sintering Parameters on the Corrosion Behavior of Pure Iron Biodegradable Scaffolds. J. of Materi Eng and Perform 31, 5139–5148 (2022). https://doi.org/10.1007/s11665-022-06602-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06602-0

Keywords

Navigation