Skip to main content
Log in

Effect of Hydrogen on Microstructure and Mechanical Behavior of High-Strength Bainitic Steel in Marine Application

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The mechanical properties and microstructural evolution of high-strength bainitic steel before and after hydrogen charging were investigated by nanoindentation creep tests and multiscale morphology observations. The results showed that hydrogen charging led to higher local nanoindentation hardness and lower stress exponent of the steel. The elongation of the material decreased, and the susceptibility to hydrogen embrittlement increased after charging. SEM observation showed that the presence of hydrogen changes the material’s fracture characteristics from ductile to a mixture of ductile and transgranular cleavage fracture. TEM and SADP analysis indicated that the energetically favorable and stress-promoted hydrogen induced the enhanced dislocation activity in the lath, and the hydrogen might accumulate at the interface between the harder M-A and the softer substrate, as well as at GB. The influence of hydrogen on material properties is caused by the interaction of hydrogen-induced local hardening and hydrogen-induced cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Z.Y. Liu, X.Z. Wang, C.W. Du, J.K. Li and X.G. Li, Effect of Hydrogen-Induced Plasticity on the Stress Corrosion Cracking of X70 Pipeline Steel in Simulated Soil Environments, Mater. Sci. Eng. A, 2016, 658, p 348–354.

    Article  CAS  Google Scholar 

  2. F.L. Ma, J.L. Li, Z.X. Zeng and Y.M. Gao, Tribocorrosion Behavior in Artificial Seawater and Anti-microbiologically Influenced Corrosion Properties of TiSiN-Cu Coating on F690 Steel, J Mater. Sci. Tech., 2019, 35(03), p 448–459.

    Article  CAS  Google Scholar 

  3. I.J. Park, K.H. Jeong, J.G. Jung, S.L. Chong and Y.K. Lee, Mechanism of Enhanced Resistance to the Hydrogen Delayed Fracture in Al-added Fe-18Mn-0.6C Twinning-Induced Plasticity Steels, Int. J Hydrogen Energy, 2012, 37, p 9925–9932.

    Article  CAS  Google Scholar 

  4. S. Feliu and M. Morcillo, The Prediction of Atmospheric Corrosion from Meteorological and Pollution Parameters, Corros. Sci, 2013, 34(3), p 403–414.

    Article  Google Scholar 

  5. H.C. Ma, C.W. Du, Z.Y. Liu and X.G. Li, Effect of SO2 Content on SCC Behavior of E690 High-Strength Steel in SO2-Polluted Marine Atmosphere, Ocean Eng., 2018, 164, p 256–262.

    Article  Google Scholar 

  6. H.Y. Tian, X. Wang, Z.Y. Cui, Q.K. Lu, L.W. Wang, L. Lei, Y. Li and D.W. Zhang, Electrochemical Corrosion, Hydrogen Permeation and Stress Corrosion Cracking Behavior of E690 Steel in Thiosulfate-Containing Artificial Seawater, Corro. Sci., 2018, 144, p 145–162.

    Article  CAS  Google Scholar 

  7. T.L. Zhao, Z.Y. Liu, C.W. Du, M.H. Sun and X.G. Li, Effects of Cathodic Polarization on Corrosion Fatigue Life of E690 Steel in Simulated Seawater, Int. J Fatigue, 2018, 110, p 105–114.

    Article  CAS  Google Scholar 

  8. H.C. Ma, L.H. Chen, J.B. Zhao, Y.H. Huang and X.G. Li, Effect of Prior Austenite Grain Boundaries on Corrosion Fatigue Behaviors of E690 High Strength Low Alloy Steel in Simulated Marine Atmosphere, Mater. Sci. Eng. A, 2020, 773, p 138884.

    Article  CAS  Google Scholar 

  9. C. Pandey, N. Saini, M.M. Mahapatra and P. Kumar, Hydrogen Induced Cold Cracking of Creep Resistant Ferritic P91 Steel for Different Diffusible Hydrogen Levels in Deposited Metal, Int. J. Hydrogen Energ., 2016, 41(39), p 17695–17712.

    Article  CAS  Google Scholar 

  10. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini and A. Srivastava, Microstructure and Mechanical Property Relationship for Different Heat Treatment and Hydrogen Level in Multi-Pass Welded P91 Steel Joint, J. Manuf. Process, 2017, 28, p 220–234.

    Article  Google Scholar 

  11. A. Barnoush and H. Vehoff, In situ Electrochemical Nanoindentation: A Technique for Local Examination of Hydrogen Embrittlement, Corros. Sci., 2008, 50, p 259–267.

    Article  CAS  Google Scholar 

  12. L.W. Wang, J.M. Liang, H. Li, L.J. Cheng and Z.Y. Cui, Quantitative Study of the Corrosion Evolution and Stress Corrosion Cracking of High Strength Aluminum Alloys in Solution and Thin Electrolyte Layer Containing Cl-, Corros. Sci, 2021, 178, p 109076.

    Article  CAS  Google Scholar 

  13. L. Zhang, B. An, S. Fukuyama and K. Yokogawa, Hydrogen Effects on Localized Plasticity in SUS310S Stainless Steel Investigated by Nanoindentation and Atomic Force Microscopy, Jpn. J Appl. Phys., 2009, 48, p 8.

    Article  Google Scholar 

  14. Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw and B. Yang, Homogenization of AlxCoCrFeNi High-entropy Alloys with Improved Corrosion Resistance, Corros. Sci., 2018, 133, p 120–131.

    Article  CAS  Google Scholar 

  15. G. Yang, Y. Zhao, D.H. Lee, J.M. Park, M.Y. Seok, J.Y. Suh, U. Ramamurty and J.I. Jang, Influence of Hydrogen on Incipient Plasticity in CoCrFeMnNi High-entropy Alloy, Scr. Mater, 2019, 161, p 23–27.

    Article  CAS  Google Scholar 

  16. D.S. Liu, B.G. Cheng and Y.Y. Chen, Fine Microstructure and Toughness of Low Carbon Copper Containing Ultra-High Strength NV-F690 Heavy Steel Plate, Acta Metall. Sin., 2012, 48(3), p 334–342.

    Article  CAS  Google Scholar 

  17. M.A. Arafin and J.A. Szpunar, Effect of Bainitic Microstructure on the Susceptibility of Pipeline Steels to Hydrogen Induced Cracking, Mater. Sci. Eng. A, 2011, 528, p 4927–4940.

    Article  CAS  Google Scholar 

  18. W.D. Nix and H.J. Gao, Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity, J Mech Phys Solid, 1998, 46, p 411–425.

    Article  CAS  Google Scholar 

  19. Y.J. Hong, C.S. Zhou, Y.Y. Zheng, L. Zhang, J.Y. Zheng, B. An, X.Y. Chen and X.H. Wang, Hydrogen Effect on the Deformation Evolution Process In situ Detected by Nanoindentation Continuous Stiffness Measurement, Mater. Charact., 2017, 127, p 35–40.

    Article  CAS  Google Scholar 

  20. K.A. Nibur, D.F. Bahr and B.P. Somerday, Hydrogen Effects on Dislocation Activity in Austenitic Stainless Steel, Acta Mater, 2006, 54, p 2677–2684.

    Article  CAS  Google Scholar 

  21. A. Barnoush, M. Asgari and R. Johnsen, Resolving the Hydrogen Effect on Dislocation Nucleation and Mobility by Electrochemical Nanoindentation, Scripta Mater, 2012, 66, p 414–417.

    Article  CAS  Google Scholar 

  22. J. Hou, X.S. Kong, C.S. Liu and J. Song, Hydrogen Clustering in Bcc Metals: Atomic Origin and Strong Stress Anisotropy, Acta Mater, 2020, 201, p 23–35.

    Article  CAS  Google Scholar 

  23. Z. Cao and X. Zhang, Nanoindentation Creep of Plasmaenhanced CVDed Silicon Oxide Films, Scripta Mater., 2007, 56, p 249–252.

    Article  CAS  Google Scholar 

  24. D.H. Lee, J.A. Lee, M.Y. Seok, U.B. Baek, S.H. Nahm and J.I. Jang, Stress Dependent Hardening-to-softening Transition of Hydrogen Effects in Nanoinde Ntation of a Linepipe Steel, Int. J Hydrog. Energy, 2014, 39, p 1897–1902.

    Article  CAS  Google Scholar 

  25. F. Wang and K. Xu, An Investigation of Nanoindentation Creep in Polycrystalline Cu Thin Film, Mater. Lett., 2004, 58, p 2345–2349.

    Article  CAS  Google Scholar 

  26. Z.L. Xu, H. Zhang, W.H. Li, A.Q. Mao, L. Wang, G.S. Song and Y.Z. He, Microstructure and Nanoindentation Creep Behavior of CoCrFeMnNi Highentropy Alloy Fabricated by Selective Laser Melting, Addit. Manuf., 2019, 28, p 766–771.

    CAS  Google Scholar 

  27. X. Gao, Displacement Burst and Hydrogen Effect During Loading and Holding in Nanoindentation of an Iron Single Crystal, Scripta Mater, 2005, 53, p 1315–1320.

    Article  CAS  Google Scholar 

  28. Y.J. Hong, C.S. Zhou, Y.Y. Zheng, J.Y. Zheng, L. Zhang and X.Y. Chen, Hydrogen Effect on Nanoindentation Creep of Austenitic Stainless Steel: A Comparative Study Between Primary Creep Stage and Steady-State Creep Stage, Int. J Hydrog. Energy, 2019, 44(40), p 22576–22583.

    Article  CAS  Google Scholar 

  29. T. Depover, T. Hajilou, D. Wan, D. Wang, A. Barnoush and K. Verbeken, Assessment of the Potential of Hydrogen Plasma Charging as Compared to Conventional Electrochemical Hydrogen Charging on Dual Phase Steel, Mater. Sci. Eng A, 2019, 754, p 613–621.

    Article  CAS  Google Scholar 

  30. T. Michler, M.C. San, J. Naumann, S. Weber and M. Martin, Hydrogen Environment Embrittlement of Stable Austenitic Steels, Int. J. Hydrog. Energy, 2012, 37, p 16231–16246.

    Article  CAS  Google Scholar 

  31. X.C. Ren, Q.J. Zhou, G.B. Shan, W.Y. Chu, J.X. Li, Y.J. Su and L.J. Qiao, A Nucleation Mechanism of Hydrogen Blister in Metals and Alloys, Metall Mater Trans A, 2008, 39A, p 87–97.

    Article  CAS  Google Scholar 

  32. X.F. Li, W.H. Huang, X.B. Wu, J. Zhang, Y. Wang, E. Akiyama and D.W. Hou, Effect of Hydrogen Charging Time on Hydrogen Blister and Hydrogen-Induced Cracking of Pure Iron, Corros. Sci., 2021, 181, p 109200.

    Article  CAS  Google Scholar 

  33. M.Q. Wang, E. Akiyama and K. Tsuzaki, Effect of Hydrogen on the Fracture Behavior of High Strength Steel During Slow Strain Rate Test, Corro. Sci., 2007, 49, p 4081–4097.

    Article  CAS  Google Scholar 

  34. H.X. Jia, X.W. Zhang, J.P. Xu, Y.P. Sun and J.X. Li, Effect of Hydrogen Content and Strain Rate on Hydrogen-Induced Delay Cracking for Hot-Stamped Steel, Metals, 2019, 9, p 798.

    Article  CAS  Google Scholar 

  35. Y.J. Hong, C.S. Zhou, Y.Y. Zheng, L. Zhang, J.Y. Zheng and X.Y. Chen, Effect of Hydrogen and Strain Rate on Nanoindentation Creep of Austenitic Stainless Steel, Int. J Hydrog. Energy, 2019, 44(2), p 1253–1262.

    Article  CAS  Google Scholar 

  36. G.S. Frankel and R.M. Latanision, Hydrogen Transport During Deformation in Nickel: Part II. Single Crystal Nickel, Metall Trans A, 1986, 17(5), p 869–875.

    Article  Google Scholar 

  37. M. Dadfarnia, M.L. Martin, A. Nagao, P. Sofronis and I.M. Robertson, Modeling Hydrogen Transport by Dislocations, J. Mech. Phys. Solids, 2015, 78, p 511–525.

    Article  CAS  Google Scholar 

  38. C. Pandey, M.M. Mahapatra, P. Kumar and N. Saini, Diffusible Hydrogen Level in Deposited Metal and Their Effect on Tensile Properties and Flexural Strength of P91 Steel, J. Eng. Mater. Technol, 2017, 139(3), p 031004.

    Article  Google Scholar 

  39. C. Pandey, M.M. Mahapatra, P. Kumar, P. Kumar, N. Saini, J.G. Thakare and S. Kumar, Study on Effect of Double Austenitization Treatment on Fracture Morphology Tensile Tested Nuclear Grade P92 Steel, Eng Fail Anal., 2019, 96, p 158–167.

    Article  CAS  Google Scholar 

  40. D.C. Ramachandran, J. Moon, C.H. Lee, S.D. Kim, J.H. Chung, E. Biro and Y.D. Park, Role of Bainitic Microstructures with M-A Constituent on the Toughness of an HSLA Steel for Seismic Resistant Structural Applications, Mater. Sci. Eng. A, 2021, 801, p 140390.

    Article  CAS  Google Scholar 

  41. Krauss G. Steels: Heat Treatment and Processing Principles, ASM Int. 1989:125–345.

  42. T. Swarr and G. Krauss, The Effect of Structure on the Deformation of As-quenched and Tempered Martensite in an Fe-0.2 pct C Alloy, Metall. Trans. A, 1976, 7, p 41–48.

    Article  Google Scholar 

  43. T. Inoue, S. Matsuda, Y. Okamura and K. Aoli, The Fracture of a Low Carbon Tempered Martensite, Trans. JIM., 1970, 11, p 36–43.

    Article  CAS  Google Scholar 

  44. J.W. Morris, On the Ductile-Brittle Transition in Lath Martensitic Steel, ISIJ Inter., 2011, 51, p 1569–1575.

    Article  CAS  Google Scholar 

  45. X. Li, C. Shang, X. Ma, S.V. Subramanian, R.D.K. Misra and J. Sun, Structure and Crystallography of Martensite–Austenite Constituent in the Intercritically Reheated Coarse-Grained Heat Affected Zone of a High Strength Pipeline Steel, Mater. Charact., 2018, 138, p 107–112.

    Article  CAS  Google Scholar 

  46. X.J. Di, X. An, F.J. Cheng, D.P. Wang, X.J. Guo and Z.K. Xue, Effect of Martensite-Austenite Constituent on Toughness of Simulated Inter-Critically Reheated Coarse Grained Heat-Affected Zone in X70 Pipeline Steel, Sci. Technol. Weld. Joi., 2016, 21(5), p 366–373.

    Article  CAS  Google Scholar 

  47. L.Y. Lan, C.L. Qiu, H.Y. Song and D.W. Zhao, Correlation of Martensite–Austenite Constituent and Cleavage Crack Initiation in Welding Heat Affected Zone of Low Carbon Bainitic Steel, Mater. Lett., 2014, 125, p 86–88.

    Article  CAS  Google Scholar 

  48. X.D. Li, X.P. Ma, S.V. Subramanian and C.J. Shang, EBSD Characterization of Secondary Microcracks in the Heat Affected Zone of a X100 Pipeline Steel Weld Joint, Int. J. Fract., 2015, 193, p 131–139.

    Article  CAS  Google Scholar 

  49. T. Ohmura, M. Minor, E.A. Stach and J.W. Morris, Dislocation–Grain Boundary Interactions in Martensitic Steel Observed Through In situ Nanoindentation in a Transmission Electron Microscope, J Mater. Res., 2004, 19(12), p 3626–3632.

    Article  CAS  Google Scholar 

  50. Y. Momotani, A. Shibata, T. Yonemura, Y. Bai and N. Tsuji, Effect of Initial Dislocation Density on Hydrogen Accumulation Behavior in Martensitic Steel, Scripta Mater, 2020, 178, p 318–323.

    Article  CAS  Google Scholar 

  51. H.T. Tian, J.C. Xin, Y. Li, X. Wang and Z.Y. Cui, Combined Effect of Cathodic Potential and Sulfur Species on Calcareous Deposition, Hydrogen Permeation, and Hydrogen Embrittlement of a Low Carbon Bainite Steel in Artificial Seawater, Corro. Sci., 2019, 158, p 108089.

    Article  CAS  Google Scholar 

  52. H.K.D.H. Bhadeshia, Prevention of Hydrogen Embrittlement in Steels, ISIJ Int., 2016, 56, p 24–36.

    Article  CAS  Google Scholar 

  53. Y.S. Chen, H.Z. Lu, J.T. Liang, A. Rosenthal, H.W. Liu, G. Sneddon, I. McCarroll, Z.Z. Zhao, W. Li, A.M. Guo and J.M. Cairney, Observation of Hydrogen Trapping at Dislocations, Grain Boundaries, and Precipitates, Science, 2020, 367, p 171–175.

    Article  CAS  Google Scholar 

  54. P. Gong, J. Nutter, P.E.J. Rivera-Diaz-Del-Castillo and W.M. Rainforth, Hydrogen Embrittlement Through the Formation of Low-energy Dislocation Nanostructures in Nanoprecipitation-Strengthened Steels, Sci. Adv., 2020, 6(46), p eabb6152.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (51801098, 51904156), the Natural Science Foundation of Jiangsu Province (No. BK20201040), Ten thousand talents project of Zhejiang (2019R52056), and the Industry-University-Research Cooperation Project of Jiangsu Province (BY2020383).

Author information

Authors and Affiliations

Authors

Contributions

ZZ: Writing original draft, project administration and funding acquisition. AW and WZ: Review & editing and funding acquisition. ZB: Resources, review & editing. ZH: TEM and data analysis. SG: Sample supplying.

Corresponding author

Correspondence to Zhen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in the present paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, A., Zhao, W. et al. Effect of Hydrogen on Microstructure and Mechanical Behavior of High-Strength Bainitic Steel in Marine Application. J. of Materi Eng and Perform 31, 4909–4924 (2022). https://doi.org/10.1007/s11665-021-06544-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06544-z

Keywords

Navigation