Skip to main content
Log in

Probing High-Temperature Electrochemical Corrosion of 316 Stainless Steel in Molten Nitrate Salt for Concentrated Solar Power Plants

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion resistance of structural materials, particularly in molten salt environments, is of central importance to design concentrated solar power (CSP) plants. In this perspective, the high-temperature electrochemical behavior of passive film on 316SS in solar salt composition (60 pct. NaNO3: 40 pct. KNO3 by wt. pct.) was evaluated using linear resistance polarization, Tafel polarization, and electrochemical impedance spectroscopy techniques in the application range of 400 to 550 °C. An increase in corrosion rate with temperature and severe oxidation at 550 °C was recorded. However, the corrosion potential (Ecorr) does not vary significantly. The critical analysis of the impedance bode phase diagram reveals two well-separated maxima at 400 °C, indicating the role of the passive layer during the corrosion process. At 500 °C, the observed phase angle is close to 45°, attributed to processes controlled by mass transfer limitations. While analyzing the influence of mass transfer, an equivalent circuit model has been proposed to analyze the corrosion of the 316SS, a material used for piping and containment of CSP plants in molten solar salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Vignarooban, X. Xu, A. Arvay, K. Hsu and A.M. Kannan, Heat Transfer Fluids for Concentrating Solar Power Systems – A Review, Appl. Energy, 2015, 146, p 383–396.

    Article  CAS  Google Scholar 

  2. D. Kearney, B. Kelly, U. Herrmann, R. Cable, J. Pacheco, R. Mahoney, H. Price, D. Blake, P. Nava and N. Potrovitza, Engineering Aspects of a Molten Salt Heat Transfer Fluid in a Trough Solar Field, Energy, 2004, 29(5), p 861–870.

    Article  CAS  Google Scholar 

  3. A.A. Attia, A.-H. Ali, A.N.A. Masri and A.M. Baraka, Corrosion Behaviour of Stainless Steel Alloys in Molten (Na, K)NO3 Eutectic Mixture, Mat.-wiss. u. Werkstofftech., 1999, 30(9), p 559–565.

    Article  CAS  Google Scholar 

  4. A.G. Fernández, A. Rey, I. Lasanta, S. Mato, M.P. Brady and F.J. Pérez, Corrosion of Alumina-Forming Austenitic Steel in Molten Nitrate Salts by Gravimetric Analysis and Impedance Spectroscopy, Mater. Corros., 2014, 65(3), p 267–275.

    Article  Google Scholar 

  5. A.S. Dorcheh, R.N. Durham and M.C. Galetz, High Temperature Corrosion in Molten Solar Salt: The Role of Chloride Impurities, Mater. Corros., 2017, 68(9), p 943–951.

    Article  CAS  Google Scholar 

  6. S.H. Goods and R.W. Bradshaw, Corrosion of Stainless Steels and Carbon Steel by Molten Mixtures of Commercial Nitrate Salts, J. Mater. Eng.Perform., 2004, 13(1), p 78–87.

    Article  CAS  Google Scholar 

  7. W.-J. Cheng, D.-J. Chen and C.-J. Wang, High-Temperature Corrosion of Cr–Mo Steel in Molten LiNO3–NaNO3–KNO3 Eutectic Salt for Thermal Energy Storage, Sol. Energy Mater. Sol. Cells, 2015, 132, p 563–569.

    Article  CAS  Google Scholar 

  8. A. Baraka, A.I. Abdel-Rohman and A.A.E. Hosary, Corrosion of Mild Steel in Molten Sodium Nitrate-Potassium Nitrate Eutectic, Br. Corros. J., 1976, 11(1), p 44–46.

    Article  CAS  Google Scholar 

  9. R.L. Brockenbrough and F.S. Merritt, Eds., "Structural Steel Designer's Handbook," 3rd ed, (New York), McGraw-Hill, 1999

  10. T. AmaroVicente, L.A. Oliveira, E.O. Correa, R.P. Barbosa, V.B.P. Macanhan and N.G. de Alcântara, Stress Corrosion Cracking Behaviour of Dissimilar Welding of AISI 310S Austenitic Stainless Steel to 2304 Duplex Stainless Steel, Metals, Multidisciplinary Digital Publishing Instit., 2018, 8(3), p 195.

    Google Scholar 

  11. C.A.C. Sequeira, "High Temperature Corrosion in Molten Salts |," n.d., https://www.scientific.net/book/high-temperature-corrosion-in-molten-salts/978-3-0357-0603-1. Accessed 13 August 2021

  12. J.W. Slusser, J.B. Titcomb, M.T. Heffelfinger and B.R. Dunbobbin, Corrosion in Molten Nitrate-Nitrite Salts, JOM, 1985, 37(7), p 24–27.

    Article  CAS  Google Scholar 

  13. R.W. Bradshaw and S.H. Goods, Effect of Temperature on Corrosion of type 316S in molten nitrate salts, Canada, Toronto, 2000.

    Google Scholar 

  14. A. Kruizenga and D. Gill, Corrosion of Iron Stainless Steels in Molten Nitrate Salt, Energy Procedia, 2014, 49, p 878–887.

    Article  CAS  Google Scholar 

  15. J.C. Gomez-Vidal, A.G. Fernandez, R. Tirawat, C. Turchi and W. Huddleston, Corrosion Resistance of Alumina-Forming Alloys against Molten Chlorides for Energy Production. I: Pre-Oxidation Treatment and Isothermal Corrosion Tests, Solar Energy Mater. Solar Cells, 2017, 166, p 222–233.

    Article  CAS  Google Scholar 

  16. I.B. Singh, G. Venkatachari and K. Balakrishnan, Electrochemical Studies on the Oxidation Behaviour of Iron in NaNO3-NaNO2 Melt, Corros. Sci., 1994, 36(10), p 1777–1787.

    Article  CAS  Google Scholar 

  17. Y.S. Cohen, Y. Gabay and Y. Cohen, Temperature-Dependent Impedance Spectroscopy of Molten Alkali-Halide Salt Binary Mixtures, ECS Electrochem. Lett., 2015, 4(1), p H1–H4.

    Article  CAS  Google Scholar 

  18. Y. Grosu, U. Nithiyanantham, A. Zaki and A. Faik, A Simple Method for the Inhibition of the Corrosion of Carbon Steel by Molten Nitrate Salt for Thermal Storage in Concentrating Solar Power Applications, npj Mater. Degrad., 2018, 2(1), p 1–8.

    Article  CAS  Google Scholar 

  19. G. García-Martín, M.I. Lasanta, V. Encinas-Sánchez, M.T. de Miguel and F.J. Pérez, Evaluation of Corrosion Resistance of A516 Steel in a Molten Nitrate Salt Mixture Using a Pilot Plant Facility for Application in CSP Plants, Sol. Energy Mater. Sol. Cells, 2017, 161, p 226–231.

    Article  Google Scholar 

  20. A. Sandoval-Amador, A.J. Santander-Vega, C.C. Amaya-Cáceres, H.A. Estupiñán-Duran, and D.Y. Peña-Ballesteros, 316L Stainless Steel Corrosion in Molten Salts NaNO3 KNO3 NaNO2 Simulating Storage Conditions, J. Phys.: Conf. Ser., IOP Publishing, 2019, 1159, p 012011

  21. Y. Grosu, O. Bondarchuk and A. Faik, The Effect of Humidity, Impurities and Initial State on the Corrosion of Carbon and Stainless Steels in Molten HitecXL Salt for CSP Application, Sol. Energy Mater. Sol. Cells, 2018, 174, p 34–41.

    Article  CAS  Google Scholar 

  22. C.L. Zeng, W. Wang and W.T. Wu, Electrochemical Impedance Models for Molten Salt Corrosion, Corros. Sci., 2001, 43(4), p 787–801.

    Article  CAS  Google Scholar 

  23. M. Wang, S. Zeng, H. Zhang, M. Zhu, C. Lei and B. Li, Corrosion Behaviors of 316 Stainless Steel and Inconel 625 Alloy in Chloride Molten Salts for Solar Energy Storage, High Temp. Mater. Processes De Gruyter, 2020, 39(1), p 340–350.

    Article  CAS  Google Scholar 

  24. J.C. Gomez-Vidal, A.G. Fernandez, R. Tirawat, C. Turchi and W. Huddleston, Corrosion Resistance of Alumina Forming Alloys against Molten Chlorides for Energy Production. II: Electrochemical Impedance Spectroscopy under Thermal Cycling Conditions, Solar Energy Mater. Solar Cells, 2017, 166, p 234–245.

    Article  CAS  Google Scholar 

  25. C.S. Ni, L.Y. Lu, C.L. Zeng and Y. Niu, Evaluation of Corrosion Resistance of Aluminium Coating with and without Annealing against Molten Carbonate Using Electrochemical Impedance Spectroscopy, J. Power Sour., 2014, 261, p 162–169.

    Article  CAS  Google Scholar 

  26. J.C. Gomez-Vidal, Corrosion Resistance of MCrAlX Coatings in a Molten Chloride for Thermal Storage in Concentrating Solar Power Applications, npj Mater Degrad, 2017, 1(1), p 1–9.

    Article  CAS  Google Scholar 

  27. A. Mallco and A.G. Fernández, Corrosion Monitoring Assessment on Lithium Nitrate Molten Salts as Thermal Energy Storage Material Applied to CSP Plants, Oxid. Met., 2020, 94(5), p 383–396.

    Article  Google Scholar 

  28. C.L. Zeng and J. Li, Electrochemical Impedance Studies of Molten (0.9Na,0.1K)2SO4-Induced Hot Corrosion of the Ni-Based Superalloy M38G at 900°C in Air, Electrochimica Acta, 2005, 50(28), p 5533–5538.

    Article  CAS  Google Scholar 

  29. M. Sarvghad, G. Will and T.A. Steinberg, Corrosion of Steel Alloys in Molten NaCl + Na2SO4 at 700°C for Thermal Energy Storage, Sol. Energy Mater. Sol. Cells, 2018, 179, p 207–216.

    Article  CAS  Google Scholar 

  30. N.H. Abu-Hamdeh and K.A. Alnefaie, Design Considerations and Construction of an Experimental Prototype of Concentrating Solar Power Tower System in Saudi Arabia, Energy Convers. Manage., 2016, 117, p 63–73. https://doi.org/10.1016/j.enconman.2016.02.077

    Article  CAS  Google Scholar 

  31. E. Mohammadi Zahrani and A.M. Alfantazi, Molten Salt Induced Corrosion of Inconel 625 Superalloy in PbSO4–Pb3O4–PbCl2–Fe2O3–ZnO Environment, Corrosion Sci., 2012, 65, p 340–359. https://doi.org/10.1016/j.corsci.2012.08.035

    Article  CAS  Google Scholar 

  32. J.I. Barraza-Fierro, M.A. Espinosa-Medina, M. Hernandez-Hernandez, H.B. Liu and E. Sosa-Hernandez, Effect of Li and Cu Addition on Corrosion of Fe–40at.% Al Intermetallics in Molten LiCl–KCl Eutectic Salt, Corrosion Sci., 2012, 59, p 119–126. https://doi.org/10.1016/j.corsci.2012.02.020

    Article  CAS  Google Scholar 

  33. E. Otero, A. Pardo, F.J. Perez, M.V. Utrilla and T. Levi, Corrosion Behavior of 12CrMoV Steel in Waste Incineration Environments: Hot Corrosion by Molten Chlorides, Oxid. Met., 1998, 49(5–6), p 467–484. https://doi.org/10.1023/A:1018851029023

    Article  CAS  Google Scholar 

  34. BPL SG8 9AZ. (01763) 222 333 The Sty, 47 Upper King Street, Royston, Hertfordshire, "Platinum as a Reference Electrode in Electrochemical Measurements," Johnson Matthey Technology Review, n.d., https://www.technology.matthey.com/article/52/2/100-106/. Accessed 9 April 2018

  35. E.M. Zahrani and A.M. Alfantazi, Corrosion Behavior of Alloy 625 in PbSO4-Pb3O4-PbCl2-ZnO-10 Wt Pct CdO Molten Salt Medium, Metall. Mat. Trans. A, 2012, 43(8), p 2857–2868. https://doi.org/10.1007/s11661-011-0996-1

    Article  CAS  Google Scholar 

  36. "ASTM G102 - 89(2015)E1 Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements," n.d., https://www.astm.org/Standards/G102.htm. Accessed 25 June 2017

  37. “SAND2013-2526 - 132526.Pdf,” n.d., http://prod.sandia.gov/techlib/access-control.cgi/2013/132526.pdf. Accessed 22 June 2017

  38. J.R. Macdonald, Impedance Spectroscopy: Old Problems and New Developments, Electrochim. Acta, 1990, 35(10), p 1483–1492.

    Article  CAS  Google Scholar 

  39. F. Mansfeld, Electrochemical Impedance Spectroscopy (EIS) as a New Tool for Investigating Methods of Corrosion Protection, Electrochim. Acta, 1990, 35(10), p 1533–1544.

    Article  CAS  Google Scholar 

  40. G. Gao, F.H. Stott, J.L. Dawson and D.M. Farrell, Electrochemical Monitoring of High-Temperature Molten-Salt Corrosion, Oxid. Met., 1990, 33(1–2), p 79–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors would like to acknowledge the Solar Energy Research Initiative (SERI) -Department of Science and Technology (DST) for their financial support. MPS wants to thank Punith Kumar M K for familiarizing him with several corrosion testing techniques.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahander Pratap Singh or Kamanio Chattopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.P., Basu, B. & Chattopadhyay, K. Probing High-Temperature Electrochemical Corrosion of 316 Stainless Steel in Molten Nitrate Salt for Concentrated Solar Power Plants. J. of Materi Eng and Perform 31, 4902–4908 (2022). https://doi.org/10.1007/s11665-021-06538-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06538-x

Keywords

Navigation