Skip to main content
Log in

Study on the Effect of the Grain Refinement on Mechanical Properties of the P92 Welded Joint

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 04 March 2022

This article has been updated

Abstract

The welded joint of martensitic P92 steel is associated with heterogeneous microstructure arising due to the thermal history of the welding thermal cycle. The complex microstructure of the welded joint results in degradation of mechanical strength of the joint in-service condition. The present work showed experimental investigation where an improvement in mechanical properties and homogeneous microstructure formation for P92 welded joint has been achieved through grain refinement of virgin P92 steel plate. The grain refinement of virgin P92 steel has been achieved using the double austenitization based normalizing and tempering treatment. The as-received P92 steel having ‘normalized and tempered’ (1040 °C/40 min/air cool+760 °C/2 h/air cool) condition had an average grain size of 9.54±2.50 μm, while after ‘double austenitization based normalizing and tempering’ P92 steel (1040 °C/60 min/water quench+950 °C/40 min/air cool+760 °C/2 h/air cool), average grain size of 15.75 ± 3.75 μm had been obtained. The welded joint has been prepared for both the condition (normalized and tempered; double austenitization based normalized and tempered) of the plates. The paper discusses the effect of grain refinement of virgin base metal on tensile properties, impact toughness and microhardness of the P92 welded joint, and results obtained for the ‘double austenitization based normalized and tempered’ welded plate have been compared with the conventional ‘normalized and tempered’ welded plate. The welded joint was also characterized for heat treatment conditions. The welded joint did not qualify the ultra-supercritical boiler requirements in as-welded condition due to poor impact energy. The fairly good impact energy and tensile properties were obtained after the double austenitization based normalizing and tempering post-weld heat treatment (DHT). After the direct post-weld heat treatment, a superior weld strength was obtained, but impact energy just qualified the minimum required value and also inhomogeneity in microstructure was obtained along welded joint. The DHT showed a significant improvement in tensile strength of welded joint without any loss in ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Change history

References

  1. R.L. Klueh and A.T. Nelson, Ferritic / Martensitic Steels for Next-Generation Reactors, J. Nucl. Mater., 2008, 371, p 37–52. https://doi.org/10.1016/j.jnucmat.2007.05.005

    Article  CAS  Google Scholar 

  2. R.L. Klueh, N. Hashimoto and P.J. Maziasz, Development of New Nano-particle-Strengthened Martensitic Steels, Scr. Mater., 2005, 53, p 275–280. https://doi.org/10.1016/j.scriptamat.2005.04.019

    Article  CAS  Google Scholar 

  3. A. Aghajani, F. Richter, C. Somsen, S.G. Fries, I. Steinbach and G. Eggeler, On the Formation and Growth of Mo-rich Laves Phase Particles During Long-term Creep of a 12% Chromium Tempered Martensite Ferritic Steel, Scr. Mater., 2009, 61, p 1068–1071. https://doi.org/10.1016/j.scriptamat.2009.08.031

    Article  CAS  Google Scholar 

  4. C. Pandey, A. Giri and M.M. Mahapatra, Effect of Normalizing Temperature on Microstructural Stability and Mechanical Properties of Creep Strength Enhanced Ferritic P91 Steel, Mater. Sci. Eng. A, 2016, 657, p 173–184. https://doi.org/10.1016/j.msea.2016.01.066

    Article  CAS  Google Scholar 

  5. R.L. Klueh and D.J. Alexander, Heat Treatment Effects on Toughness of 9Cr-1MoVNb and 12Cr-1MoVW Steels Irradiated at 365??C, J. Nucl. Mater., 1992, 191–194, p 896–900. https://doi.org/10.1016/0022-3115(92)90602-H

    Article  Google Scholar 

  6. A. Moitra, P. Parameswaran, P.R. Sreenivasan and S.L. Mannan, A Toughness Study of the Weld Heat-Affected Zone of a 9Cr–1Mo Steel, Mater. Charact., 2002, 48, p 55–61.

    Article  CAS  Google Scholar 

  7. A. Kostka, K.G. Tak, R.J. Hellmig, Y. Estrin and G. Eggeler, On the Contribution of Carbides and Micrograin Boundaries to the Creep Strength of Tempered Martensite Ferritic Steels, Acta Mater., 2007, 55, p 539–550. https://doi.org/10.1016/j.actamat.2006.08.046

    Article  CAS  Google Scholar 

  8. N. Saini, C. Pandey and M.M. Mahapatra, Effect of Normalizing Temperature on Fracture Characteristic of Tensile and Impact Tested Creep Strength-Enhanced Ferritic P92 Steel, J. Mater. Eng. Perform., 2017, 26, p 5414–5424. https://doi.org/10.1007/s11665-017-2988-9

    Article  CAS  Google Scholar 

  9. D.R. Barbadikar, G.S. Deshmukh, L. Maddi, K. Laha, P. Parameswaran, A.R. Ballal et al., effect of Normalizing and Tempering Temperatures on Microstructure and Mechanical Properties of P92 Steel, Int. J. Press. Vessel Pip., 2015, 132–133, p 97–105. https://doi.org/10.1016/j.ijpvp.2015.07.001

    Article  CAS  Google Scholar 

  10. M. Yoshino, Y. Mishima, Y. Toda, H. Kushima, K. Sawada and K. Kimura, Influence of Normalizing Heat Treatment on Precipitation Behavior in Modified 9Cr-1Mo Steel, Mater. High. Temp., 2005, 25, p 5–10.

    Google Scholar 

  11. V. Dudko, A. Belyakov and R. Kaibyshev, Effect of Tempering on Mechanical Properties and Microstructure of a 9 % Cr Heat Resistant Steel, MSF, 2012 https://doi.org/10.4028/www.scientific.net/MSF.706-709.841

    Article  Google Scholar 

  12. I. Fedorova, A. Kostka, E. Tkachev, A. Belyakov and R. Kaibyshev, Tempering Behavior of a Low Nitrogen Boron-Added 9%Cr Steel, Mater. Sci. Eng. A, 2016, 662, p 443–455. https://doi.org/10.1016/j.msea.2016.03.092

    Article  CAS  Google Scholar 

  13. T. Karthikeyan, V. Thomas Paul, S. Saroja, A. Moitra, G. Sasikala and M. Vijayalakshmi, Grain Refinement to Improve Impact Toughness in 9Cr-1Mo Steel through a Double Austenitization Treatment, J. Nucl. Mater., 2011, 419, p 256–262. https://doi.org/10.1016/j.jnucmat.2011.08.010

    Article  CAS  Google Scholar 

  14. A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra and A.K. Bhaduri, Effect of Normalization Temperatures on Ductile-Brittle Transition Temperature of a Modified 9Cr-1Mo Steel, Mater. Sci. Eng. A, 2014, 618, p 219–231. https://doi.org/10.1016/j.msea.2014.09.021

    Article  CAS  Google Scholar 

  15. L. Maddi, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, K. Laha and M.D. Mathew, Effect of Tempering Temperature on the Stress Rupture Properties of Grade 92 Steel, Mater. Sci. Eng. A, 2015, 639, p 431–438. https://doi.org/10.1016/j.msea.2015.05.062

    Article  CAS  Google Scholar 

  16. N. Saini, C. Pandey and M.M. Mahapatra, Characterization and Evaluation of Mechanical Properties of CSEF P92 Steel for Varying Normalizing Temperature, Mater. Sci. Eng. A, 2017, 688, p 250–261. https://doi.org/10.1016/j.msea.2017.02.022

    Article  CAS  Google Scholar 

  17. F.W. Noble, B.A. Seniort and B.L. Eyre, The Effect of Phosphorus on 9 Cr-M o Steels, Acta Mater. Mater., 1990, 38, p 709–717.

    Article  CAS  Google Scholar 

  18. B.K. Choudhary, K.B. Sankara, S.L. Mannan and B.P. Kashyap, Infuence of Prior Thermal Ageing on Tensile Deformation and Fracture Behaviour of Forged Thick Section 9Cr ± 1Mo Ferritic Steel, J. Nucl. Mater., 1999, 273, p 315–325.

    Article  CAS  Google Scholar 

  19. J. Henry, X. Averty, Y. Dai, P. Lamagnère, J.P. Pizzanelli, J.J. Espinas et al., Tensile Properties of 9Cr-1Mo Martensitic Steel Irradiated with High Energy Protons and Neutrons, J. Nucl. Mater., 2003, 318, p 215–227. https://doi.org/10.1016/S0022-3115(03)00119-3

    Article  CAS  Google Scholar 

  20. S. Sathyanarayanan, G. Sasikala and S.K. Ray, Evaluation of Dynamic Fracture Toughness of Cold Worked 9Cr-1Mo Steel, Int. J. Press. Vessel Pip., 2004, 81, p 419–425. https://doi.org/10.1016/j.ijpvp.2004.03.013

    Article  CAS  Google Scholar 

  21. T. Karthikeyan, M. Kumar, R. Mythili, S.P. Selvi, A. Moitra and S. Saroja, Effect of Prior-Austenite Grain Re fi nement on Microstructure, Mechanical Properties and Thermal Embrittlement of 9Cr-1Mo-0.1C Steel, J. Nucl. Mater., 2017, 494, p 260–277. https://doi.org/10.1016/j.jnucmat.2017.07.019

    Article  CAS  Google Scholar 

  22. C. Wang, M. Wang, J. Shi, W. Hui and H. Dong, Effect of Microstructural Refinement on the Toughness of Low Carbon Martensitic Steel, Scr. Mater., 2008, 58, p 492–495. https://doi.org/10.1016/j.scriptamat.2007.10.053

    Article  CAS  Google Scholar 

  23. C. Pandey, M.M. Mahapatra, P. Kumar, P. Kumar, N. Saini, J.G. Thakare et al., Study on Effect of Double Austenitization Treatment on Fracture Morphology Tensile Tested Nuclear Grade P92 Steel, Eng. Fail. Anal., 2019, 96, p 158–167. https://doi.org/10.1016/j.engfailanal.2018.09.036

    Article  CAS  Google Scholar 

  24. N. Saini, S.R Mulik, M.M Mahapatra MM. Prior-Austenite Grain Refinement in P92 Steel using Double Austenitization Treatmentus. Mater. Res. Express 2018:1–10.

  25. B. Adhithan and C. Pandey, Study on Effect of Grain Refinement of P92 Steel Base Plate on Mechanical and Microstructural Features of the Welded Joint, Int. J. Press. Vessel. Pip., 2021 https://doi.org/10.1016/j.ijpvp.2021.104426

    Article  Google Scholar 

  26. E23-02a A. ASTM E23-02a - Notched Bar Impact Testing of Metallic Materials . pdf. ASTM Int 2002.

  27. H. Cerjak and P. Mayr, Creep strength of welded joints of ferritic steels. Creep Resist Steels (1 ed., pp. 472–503) Cambridge Woodhead Publ. 2008. https://doi.org/10.1533/9781845694012.2.472.

  28. W.G. Seo, J.Y. Suh, J.H. Shim, H. Lee, K. Yoo and S.H. Choi, Effect of Post-Weld Heat Treatment on the Microstructure and Hardness of P92 Steel in IN740H/P92 Dissimilar Weld Joints, Mater. Charact., 2020, 160, 110083. https://doi.org/10.1016/j.matchar.2019.110083

    Article  CAS  Google Scholar 

  29. D.R. Barbadikar, T. Sakthivel, A.R. Ballal, D.R. Peshwe, P. Syamala Rao and M.D. Mathew, An Assessment of Mechanical Properties of P92 Steel Weld Joint and Simulated Heat Affected Zones by Ball Indentation Technique, Mater. High Temp., 2017 https://doi.org/10.1080/09603409.2017.1371913

    Article  Google Scholar 

  30. B.K. Choudhary, E.I. Samuel, G. Sainath, J. Christopher and M.D. Mathew, Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44, p 4979–4992. https://doi.org/10.1007/s11661-013-1869-6

    Article  CAS  Google Scholar 

  31. Y. Zhang, M. Fan, K. Ding, B. Zhao, Y. Zhang, Y. He et al., Formation and Control of the Residual δ-ferrite in 9% Cr-HAZ of Alloy 617/9% Cr Dissimilar Welded Joint, Sci. Technol. Weld Join., 2020 https://doi.org/10.1080/13621718.2020.1719622

    Article  Google Scholar 

  32. P. Mayr and H. Cerjak, The Impact of Welding on the Creep Properties of Advanced 9–12 % Cr Steels, Trans. Indian Inst. Met., 2010, 9, p 131–136. https://doi.org/10.1007/s12666-010-0018-9

    Article  Google Scholar 

  33. P. Mayr and H. Cerjak, The Impact of Welding on the Creep Properties of Advanced 9–12 % Cr Steels, Trans. Indian Inst. Met., 2010, 9, p 5–10.

    Google Scholar 

  34. S. Paddea, J.A. Francis, A.M. Paradowska, P.J. Bouchard and I.A. Shibli, Residual Stress Distributions in a P91 Steel-Pipe Girth Weld Before and After Post Weld Heat Treatment, Mater. Sci. Eng. A, 2012, 534, p 663–672. https://doi.org/10.1016/j.msea.2011.12.024

    Article  CAS  Google Scholar 

  35. D.J. Abson and J.S. Rothwell, Review of Type IV Cracking of Weldments in 9–12 % Cr Creep Strength Enhanced Ferritic Steels, Int. Mater. Rev., 2013, 58, p 437–473. https://doi.org/10.1179/1743280412Y.0000000016

    Article  CAS  Google Scholar 

  36. V.L. Manugula, K.V. Rajulapati, G.M. Reddy and K.B. Sankara, Role of Evolving Microstructure on the Mechanical Properties of Electron Beam Welded Ferritic-Martensitic Steel in the As-welded and Post Weld Heat- Treated States, Mater. Sci. Eng. A, 2017, 698, p 36–45. https://doi.org/10.1016/j.msea.2017.05.036

    Article  CAS  Google Scholar 

  37. C. Pandey, M.M. Mahapatra, P. Kumar and N. Saini, Effect of Normalization and Tempering on Microstructure and Mechanical Properties of V-Groove and Narrow-Groove P91 Pipe Weldments, Mater. Sci. Eng. A, 2017, 685, p 39–49. https://doi.org/10.1016/j.msea.2016.12.079

    Article  CAS  Google Scholar 

  38. M. Abd El-Rahman Abd El-Salam, I. El-Mahallawi and M.R. El-Koussy, Influence of Heat Input and Post-Weld Heat Treatment on Boiler Steel P91 (9Cr – 1Mo – V – Nb ) Weld Joints Part 2 – Mechanical Properties, Int. Heat Treat Surf. Eng., 2013, 7, p 32–37.

    Article  Google Scholar 

  39. C. Pandey, M.M. Mahapatra and P. Kumar, Effect of Post Weld Heat Treatments on Fracture Frontier and Type IV Cracking Nature of the Crept P91 Welded Sample, Mater. Sci. Eng. A, 2018, 731, p 249–265. https://doi.org/10.1016/j.msea.2018.06.038

    Article  CAS  Google Scholar 

  40. P.K. Chaurasia, C. Pandey, A. Giri, N. Saini and M.M. Mahapatra, A Comparative Study of Residual Stress and Mechanical Properties for fsw and tig Weld on Structural Steel, Arch. Metall. Mater., 2018, 63, p 1019–1029. https://doi.org/10.24425/122437

    Article  CAS  Google Scholar 

  41. C. Pandey, N. Saini, M.M. Mahapatra and P. Kumar, Study of the Fracture Surface Morphology of Impact and Tensile Tested Cast and Forged (C&F) Grade 91 Steel at Room Temperature for Different Heat Treatment Regimes, Eng. Fail. Anal., 2016, 71, p 131–147. https://doi.org/10.1016/j.engfailanal.2016.06.012

    Article  CAS  Google Scholar 

  42.  S. Sirohi, S. Kumar, V. Bhanu, C. Pandey, A. Gupta, Study on the Variation in Mechanical Properties along the Dissimilar Weldments of P22 and P91 Steel, J. Mater. Eng. Perform., 2021. https://doi.org/10.1007/s11665-021-06306-x

    Article  Google Scholar 

  43. C. Pandey, M. Mohan Mahapatra, P. Kumar, J.G. Thakre and N. Saini, Role of Evolving Microstructure on the Mechanical Behaviour of P92 Steel Welded Joint in as-Welded and Post Weld Heat Treated State, J. Mater. Process. Technol., 2019, 263, p 241–255. https://doi.org/10.1016/j.jmatprotec.2018.08.032

    Article  CAS  Google Scholar 

  44. C. Pandey, M.M. Mahapatra, P. Kumar and N. Saini, Comparative Study of Autogenous Tungsten Inert Gas Welding and Tungsten Arc Welding with Filler Wire for Dissimilar P91 and P92 Steel Weld Joint, Mater. Sci. Eng. A, 2018, 712, p 720–737. https://doi.org/10.1016/j.msea.2017.12.039

    Article  CAS  Google Scholar 

  45. P. Sharma and D.K. Dwivedi, Comparative Study of Activated Flux-GTAW and Multipass-GTAW Dissimilar P92 Steel-304H ASS Joints, Mater. Manuf. Process., 2019, 34, p 1195–1204. https://doi.org/10.1080/10426914.2019.1605175

    Article  CAS  Google Scholar 

  46. B. Silwal, L. Li, A. Deceuster and B. Griffiths, Effect of Postweld Heat Treatment on the Toughness of Heat-Affected Zone for Grade 91 Steel, Weld. J, 2013, 92, p 80s–87s.

    Google Scholar 

  47. C. Pandey and M.M. Mahapatra, Effect of Groove Design and Post-Weld Heat Treatment on Microstructure and Mechanical Properties of P91 Steel Weld, J. Mater. Eng. Perform., 2016, 25, p 2761–2775. https://doi.org/10.1007/s11665-016-2127-z

    Article  CAS  Google Scholar 

  48. F. Kafexhiu, F. Vodopivec and J. Vojvodi, Tempering Effects on the Microstructure, Mechanical Properties and Creep Rate of X20CrMoV121 and P91 Steels, Mater. Technol., 2012, 46, p 459–464.

    CAS  Google Scholar 

  49. C. Pandey and M.M. Mahapatra, Evolution of Phases During Tempering of P91 Steel at 760 °C for Varying Tempering time and their Effect on Microstructure and Mechanical Properties, Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng., 2017 https://doi.org/10.1177/0954408916656678

    Article  Google Scholar 

  50. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, J.G. Thakre, R.S. Vidyarthy et al., A Brief Study on δ-Ferrite Evolution in Dissimilar P91 and P92 Steel Weld Joint and their Effect on Mechanical Properties, Arch. Civ. Mech. Eng., 2018, 18, p 713–722. https://doi.org/10.1016/j.acme.2017.12.002

    Article  Google Scholar 

  51. H.M. Qadr and A.M. Hamad, Mechanical Properties of Ferritic Martenstic Steels: A Review, Sci. Bull. Valahia Univ. – Mater. Mech., 2019, 17, p 18–27. https://doi.org/10.2478/bsmm-2019-0003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Pandey or S. Sirohi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: In the originally published article, the affiliation for S. Sirohi and S. Kumar was incorrect. Their correct affiliation is: S. Sirohi and S. Kumar, Department of Mechanical Engineering, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar 201204, Uttar Pradesh, India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, C., Kumar, N., Sirohi, S. et al. Study on the Effect of the Grain Refinement on Mechanical Properties of the P92 Welded Joint. J. of Materi Eng and Perform 31, 4385–4404 (2022). https://doi.org/10.1007/s11665-021-06536-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06536-z

Keywords

Navigation