Skip to main content
Log in

Effects of Machining Parameters on Surface Integrity when Turning Inconel 718

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

When cutting nickel-based alloys, the machining parameters significantly influence the surface integrity. This paper describes face-turning experiments using the nickel-based alloy Inconel 718 with two types of inserts. The effects of various turning parameters on the surface roughness, residual stress, microhardness, and microstructure of the alloy samples are investigated for both ceramic and carbide inserts. A quadratic surface roughness response model incorporating the cutting speed, cutting depth, and feed rate is developed, and the micromechanics and microstructure in the turned subsurface are analyzed under three levels of cutting parameters. The results show that a smoother, more uniform surface is obtained when using a ceramic insert. The residual stress and microhardness distributions induced by the carbide and ceramic inserts are similar. The residual stress layer is about 80 µm thick and the work-hardened layer has a thickness of around 70 µm. No severe plastic deformation is observed with either the carbide or ceramic insert. Generally, the ceramic insert is more suitable for turning Inconel 718 than the carbide insert. A low cutting speed, moderate cutting depth, and moderate feed rate are found to produce excellent surface integrity characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X.Y. Wang, C.Z. Huang, B. Zou and J. Wang, Experimental Study of Surface Integrity and Fatigue Life in the Face Milling of Inconel 718, Front. Mech. Eng., 2018, 13(2), p 243–250.

    Article  Google Scholar 

  2. A. Thakur and S. Gangopadhyay, State-of-the-Art in Surface Integrity in Machining of Nickel-Based Super Alloys, Int. J. Mach. Tools Manuf., 2016, 100, p 25–54.

    Article  Google Scholar 

  3. S.M. Darwish, The Impact of the Tool Material and the Cutting Parameters on Surface Roughness of Supermet 718 Nickel Superalloy, J. Mater. Process. Technol., 2009, 97(1–3), p 10–18.

    Google Scholar 

  4. D. Ulutan and T. Ozel, Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review, Int. J. Mach. Tools Manuf., 2011, 51(3), p 250–280.

    Article  Google Scholar 

  5. L. Li, N. He, M. Wang and Z.G. Wang, High Speed Cutting of Inconel 718 with Coated Carbide and Ceramic Inserts, J. Mater. Process. Technol., 2002, 129, p 127–130.

    Article  CAS  Google Scholar 

  6. S. Amini, M.H. Fatemi and R. Atefi, High Speed Turning of Inconel 718 Using Ceramic and Carbide Cutting Tools, Arab. J. Sci. Eng., 2014, 39(3), p 2323–2330.

    Article  CAS  Google Scholar 

  7. X.L. Liang, Z.Q. Liu and B. Wang, State-of-the-Art of Surface Integrity Induced by Tool Wear Effects in Machining Process of Titanium and Nickel Alloys: A Review, Measurement, 2019, 132, p 150–181.

    Article  Google Scholar 

  8. R.M. Arunachalam, M.A. Mannan and A.C. Spowage, Residual Stress and Surface Roughness When Facing Age Hardened Inconel 718 with CBN and Ceramic Cutting Tools, Int. J. Mach. Tools Manuf., 2004, 44(9), p 879–887.

    Article  Google Scholar 

  9. F. Jafarian, D. Umbrello, S. Golpayegani and Z. Darake, Experimental Investigation to Optimize Tool Life and Surface Roughness in Inconel 718 Machining, Mater. Manuf. Process., 2016, 31(13), p 1683–1691.

    Article  CAS  Google Scholar 

  10. R.S. Pawade, S.S. Joshi, P.K. Brahmankar and M. Rahman, An Investigation of Cutting Forces and Surface Damage in High-Speed Turning of Inconel718, J. Mater. Process. Technol., 2007, 192–193, p 139–146.

    Article  Google Scholar 

  11. Y.H. Fan, Z.P. Hao, M.L. Zheng, F.L. Sun and S.C. Yang, Study of Surface Quality in Machining Nickel-Based Alloy Inconel 718, Int. J. Adv. Manuf. Technol., 2013, 69(9–12), p 2659–2667.

    Article  Google Scholar 

  12. G. Akincioglu, Investigation of the Effect of Cryogenic Treatment Cubic Boron Nitride Turning Insert Tools, J. Mater. Eng. Perform., 2021, 30(2), p 1280–1288.

    Article  CAS  Google Scholar 

  13. S. Akincioglu, H. Gokkaya, G. Akincioglu and M.A. Karatas, Taguchi Optimization of Surface Roughness in the Turning of Hastelloy C22 Super Alloy Using Cryogenically Treated Ceramic Inserts, Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci., 2020, 234(19), p 3826–3836.

    Article  CAS  Google Scholar 

  14. V. Sivalingam, Y.Z. Zhao, R. Thulasiram, J. Sun, G. Kai and T. Nagamalai, Machining Behaviour, Surface Integrity and Tool Wear Analysis in Environment Friendly Turning of Inconel 718 Alloy, Measurement, 2021, 174, p 109028.

    Article  Google Scholar 

  15. N.S. Rossini, M. Dassisti, K.Y. Benyounis and A.G. Olabi, Methods of Measuring Residual Stresses in Components, Mater. Des., 2012, 35, p 572–588.

    Article  Google Scholar 

  16. A.R.C. Sharman, J.I. Hughes and K. Ridgway, An Analysis of The Residual Stresses Generated in Inconel 718TM When Turning, J. Mater. Process. Technol., 2006, 173(3), p 359–367.

    Article  CAS  Google Scholar 

  17. A. Kortabarri, A. Madariag, E. Fernandez, J.A. Esnaola and P.J. Arrazola, A Comparative Study of Residual Stress Profiles on Inconel 718 Induced by Dry Face Turning, Procedia Eng., 2011, 19, p 228–234.

    Article  Google Scholar 

  18. J.M. Zhou, V. Bushlya, R.L. Peng, Z. Chen, S. Johansson and J.E. Stahl, Analysis of Subsurface Microstructure and Residual Stresses in Machined Inconel 718 with PCBN and Al2O3-SiCw Tools, Procedia CIRP, 2014, 13, p 150–155.

    Article  Google Scholar 

  19. J.C. Outeiro, J.C. Pina, R. M’Saoubi, F. Pusavec and I.S. Jawahir, Analysis of Residual Stresses Induced by Dry Turning of Difficult-To-Machine Materials, CIRP Ann-Manuf. Technol., 2008, 57(1), p 77–80.

    Article  Google Scholar 

  20. A. Devillez, G. Le Coz, S. Dominiak and D. Dudzinski, Dry Machining of Inconel 718, Workpiece Surface Integrity, J. Mater. Process. Technol., 2011, 211(10), p 1590–1598.

    Article  CAS  Google Scholar 

  21. D. Ulutan, Y.M. Arisoy, T. Özel and L. Mears, Empirical Modelling of Residual Stress Profile in Machining Nickel-Based Superalloys Using the Sinusoidal Decay Function, Procedia CIRP, 2014, 13, p 365–370.

    Article  Google Scholar 

  22. R.S. Pawade, S.S. Joshi and P.K. Brahmankar, Effect of Machining Parameters and Cutting Edge Geometry on Surface Integrity of High-Speed Turned Inconel 718, Int. J. Mach. Tools Manuf., 2008, 48(1), p 15–28.

    Article  Google Scholar 

  23. I. Torrano, O. Barbero, A. Kortabarria, and P.J. Arrazola, Prediction of Residual Stresses in Turning of Inconel 718, 13th CIRP Conference on Modelling of Machining Operations, Sintra, Portugal, May 12–13, 2011, p. 421–430.

  24. E.O. Ezugwu, Z.M. Wang and C.I. Okeke, Tool Life and Surface Integrity When Machining Inconel 718 with PVD- and CVD-Coated Tools, Tribol. Trans., 1999, 42(2), p 353–360.

    Article  CAS  Google Scholar 

  25. R.T. Coelho, L.R. Silva, A. Braghini Jr. and A.A. Bezerra, Some Effects of Cutting Edge Preparation and Geometric Modifications When Turning Inconel 718TM at High Cutting Speeds, J. Mater. Process. Technol., 2004, 148(1), p 147–153.

    Article  CAS  Google Scholar 

  26. A. Madariaga, J.A. Esnaola, E. Fernandez, P.J. Arrazola, A. Garay and F. Morel, Analysis of Residual Stress and Work-Hardened Profiles on Inconel 718 When Face Turning with Large-Nose Radius Tools, Int. J. Adv. Manuf. Technol., 2014, 71(9–12), p 1587–1598.

    Article  Google Scholar 

  27. D.G. Thakur, L. Ramamoorthy and L. Vijayaraghavan, Effect of Cutting Parameters on the Degree of Work Hardening and Tool Life During High-Speed Machining of Inconel 718, Int. J. Adv. Manuf. Technol., 2012, 59(5–8), p 483–489.

    Article  Google Scholar 

  28. X.P. Ren, Z.Q. Liu, X.L. Liang and P.C. Cui, Effects of Machined Surface Integrity on High-Temperature Low-Cycle Fatigue Life and Process Parameters Optimization of Turning Superalloy Inconel 718, Materials, 2021, 14(9), p 2428.

    Article  CAS  Google Scholar 

  29. V. Bushlya, J.M. Zhou, F. Lenrick, P. Avdovic and J.-E. Ståhl, Characterization of White Layer Generated When Turning Aged Inconel 718, Procedia Eng., 2012, 19, p 60–66.

    Article  Google Scholar 

  30. J.M. Zhou, V. Bushlya, R.L. Peng, S. Johansson, P. Avdovic and J.-E. Ståhl, Effects of Tool Wear on Subsurface Deformation of Nickel-Based Superalloy, Procedia Eng., 2012, 19, p 407–413.

    Article  Google Scholar 

  31. W. Akhtar, J.F. Sun and W.Y. Chen, Effect of Machining Parameters on Surface Integrity in High Speed Milling of Super Alloy GH4169/Inconel 718, Mater. Manuf. Process., 2016, 31(5), p 620–627.

    Article  CAS  Google Scholar 

  32. D.X. Wu, D.H. Zhang and C.F. Yao, Effect of Turning and Surface Polishing Treatments on Surface Integrity and Fatigue Performance of Nickel-Based Alloy GH4169, Metals, 2018, 8(7), p 549.

    Article  Google Scholar 

  33. J.L. Cantero, J. Díaz-Álvarez, M.H. Miguélez and N.C. Marín, Analysis of Tool Wear Patterns in Finishing Turning of Inconel 718, Wear, 2013, 297(1–2), p 885–894.

    Article  CAS  Google Scholar 

  34. D. Arola and M. Ramulu, An Examination of the Effects from Surface Texture on the Strength of Fiber Reinforced Plastics, J. Compos. Mater., 1999, 33(2), p 102–123.

    Article  CAS  Google Scholar 

  35. A.R.C. Sharman, J.I. Hughesand and K. Ridgway, Workpiece Surface Integrity and Tool Life Issues When Turning Inconel 718TM Nickel Based Superalloy, Mach. Sci. Technol., 2004, 8(3), p 399–414.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [Grant Nos. 51905440, 51875472, and 91860206], the National Science and Technology Major Project of China [Grant No. 2017-VII-0001-0095], and the Key Research and Development Program of Shaanxi Province [Grant No. 2021ZDLGY10-06].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Yao, C., Li, X. et al. Effects of Machining Parameters on Surface Integrity when Turning Inconel 718. J. of Materi Eng and Perform 31, 4176–4186 (2022). https://doi.org/10.1007/s11665-021-06523-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06523-4

Keywords

Navigation