Skip to main content

In situ Passive Infrared Thermography Application for the Assessment of Localized Mechanical Properties of Tungsten Inert Gas-Welded Inconel 625 Alloys

Abstract

Traditional evaluation of weld joint mechanical properties by destructive testing shows the limitations of these methods, including equipment limitations, high materials/testing cost, and challenging repeatability. This work presents an experimental approach for utilizing passive infrared thermography and tensile testing to evaluate the correlation between thermal and localized TIG-welded Inconel 625 joints' mechanical properties. The results show that different areas of interest deform differently during the tensile test. The dog-bone shaped TIG-welded samples were divided into five regions of interest on both sides of the weldment, of which two are repetitive on both sides of the sample representing Inconel 625 base metal alloy, heat-affected zones, and weld beads. The temperature change rate in these three regions varied from 0.17 to 0.67°C per minute as the tensile test progresses. The fractography analysis showed that the failure occurred within the weld beads, even though the highest temperature was observed in the heat-affected zones, suggesting higher strength in the heat-affected zones. The improvement mechanism introduced in this work utilizes thermography visualization to predict weld failure as nonlinear elongations are observed across different stages during the tensile tests.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. M. Rippa, A. Ambrosone, A. Leone and P. Mormile, Active Thermography for Real Time Monitoring of UV-B Plant Interactions, J. Photochem. Photobiol. B Biol., 2020 https://doi.org/10.1016/j.jphotobiol.2020.111900

    Article  Google Scholar 

  2. Y. Xu, S. Hwang, Q. Wang, D. Kim, C. Luo, J. Yang et al., Laser Active Thermography for Debonding Detection in FRP Retrofitted Concrete Structures, NDT E Int., 2020 https://doi.org/10.1016/j.ndteint.2020.102285

    Article  Google Scholar 

  3. X. Zou, A. Mirala, L.H. Sneed, M.T. Al Qaseer and K. Donnell, Detection of CFRP-Concrete Interfacial Debonding Using Active Microwave Thermography, Compos. Struct., 2020 https://doi.org/10.1016/j.compstruct.2020.113261

    Article  Google Scholar 

  4. U. Martens and K.U. Schröder, Evaluation of Infrared Thermography Methods for Analysing the Damage Behaviour of Adhesively Bonded Repair Solutions, Compos. Struct., 2020, 240, 111991. https://doi.org/10.1016/j.compstruct.2020.111991

    Article  Google Scholar 

  5. W. Harizi, S. Chaki, G. Bourse and M. Ourak, Mechanical Damage Assessment of Glass Fiber-Reinforced Polymer Composites Using Passive Infrared Thermography, Compos. Part B Eng., 2014, 59, p 74–79. https://doi.org/10.1016/j.compositesb.2013.11.021

    Article  CAS  Google Scholar 

  6. S. Matteï, D. Grevey, A. Mathieu and L. Kirchner, Using Infrared Thermography in Order to Compare Laser and Hybrid (Laser+MIG) Welding Processes, Opt. Laser Technol., 2009, 41, p 665–670. https://doi.org/10.1016/j.optlastec.2009.02.005

    Article  CAS  Google Scholar 

  7. Y.Y. Hung, Y.S. Chen, S.P. Ng, L. Liu, Y.H. Huang, B.L. Luk et al., Review and Comparison of Shearography and Active Thermography for Nondestructive Evaluation, Mater. Sci. Eng. R Rep., 2009, 64, p 73–112. https://doi.org/10.1016/j.mser.2008.11.001

    Article  CAS  Google Scholar 

  8. H.X. Zhang, G.H. Wu, Z.F. Yan, S.F. Guo, P.D. Chen and W.X. Wang, An Experimental Analysis of Fatigue Behavior of AZ31B Magnesium Alloy Welded Joint Based on Infrared Thermography, Mater Des, 2014, 55, p 785–791. https://doi.org/10.1016/j.matdes.2013.10.036

    Article  CAS  Google Scholar 

  9. M. Villar, C. Garnier, F. Chabert, V. Nassiet, D. Samélor, J.C. Diez et al., In-Situ Infrared Thermography Measurements to Master Transmission Laser Welding Process Parameters of PEKK, Opt. Lasers Eng., 2018, 106, p 94–104. https://doi.org/10.1016/j.optlaseng.2018.02.016

    Article  Google Scholar 

  10. P. Broberg, Surface Crack Detection in Welds Using Thermography, NDT E Int., 2013, 57, p 69–73. https://doi.org/10.1016/j.ndteint.2013.03.008

    Article  Google Scholar 

  11. T. Światczak, M. Tomczyk, B. Wiecek, R. Pawlak and R. Olbrycht, Defect Detection in Wire Welded Joints Using Thermography Investigations, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2012, 177, p 1239–1242. https://doi.org/10.1016/j.mseb.2012.03.009

    Article  CAS  Google Scholar 

  12. Y. Javadi, E. Mohseni, C.N. MacLeod, D. Lines, M. Vasilev, C. Mineo et al., Continuous Monitoring of an Intentionally-Manufactured Crack Using an Automated Welding and In-Process Inspection System, Mater. Des., 2020, 191, 108655. https://doi.org/10.1016/j.matdes.2020.108655

    Article  CAS  Google Scholar 

  13. M. Rodríguez-Martin, S. Lagüela, D. González-Aguilera and P. Arias, Cooling Analysis of Welded Materials for Crack Detection Using Infrared Thermography, Infrared Phys. Technol., 2014, 67, p 547–554. https://doi.org/10.1016/j.infrared.2014.09.025

    Article  CAS  Google Scholar 

  14. M. Rodríguez-Martín, S. Lagüela, D. González-Aguilera and J. Martinez, Prediction of Depth Model for Cracks in Steel Using Infrared Thermography, Infrared Phys. Technol., 2015, 71, p 492–500. https://doi.org/10.1016/j.infrared.2015.06.013

    Article  CAS  Google Scholar 

  15. S. Doshvarpassand, C. Wu and X. Wang, An Overview of Corrosion Defect Characterization Using Active Infrared Thermography, Infrared Phys. Technol., 2019, 96, p 366–389. https://doi.org/10.1016/j.infrared.2018.12.006

    Article  CAS  Google Scholar 

  16. T. Ummenhofer and J. Medgenberg, On the Use of Infrared Thermography for the Analysis of Fatigue Damage Processes in Welded Joints, Int. J. Fatigue, 2009, 31, p 130–137. https://doi.org/10.1016/j.ijfatigue.2008.04.005

    Article  CAS  Google Scholar 

  17. A. Atieh, N. Rawashdeh and A. AlHazaa, Evaluation of Surface Roughness by Image Processing of a Shot-Peened, TIG-Welded Aluminum 6061–T6 Alloy: An Experimental Case Study, Materials (Basel), 2018, 11, p 771. https://doi.org/10.3390/ma11050771

    Article  CAS  Google Scholar 

  18. N.A. Rawashdeh, J.M. Abu-Khalaf, W. Khraisat and S.S. Al-Hourani, A Visual Inspection System of Glass Ampoule Packaging Defects: Effect of Lighting Configurations, Int. J. Comput. Integr. Manuf., 2018, 31, p 848–856. https://doi.org/10.1080/0951192X.2018.1447145

    Article  Google Scholar 

  19. H. Tuo, T. Wu, Z. Lu and X. Ma, Evaluation of Damage Evolution of Impacted Composite Laminates Under Fatigue Loadings by Infrared Thermography and Ultrasonic Methods, Polym. Test, 2021, 93, 106869. https://doi.org/10.1016/j.polymertesting.2020.106869

    Article  CAS  Google Scholar 

  20. U. Shah and X. Liu, Effect of Ultrasonic Energy on the Spot Weldability of Aluminum Alloy AA6061, Mater. Des., 2020, 192, 108690. https://doi.org/10.1016/j.matdes.2020.108690

    Article  CAS  Google Scholar 

  21. S.C.A. Alfaro, J.A.R. Vargas, G.C. De Carvalho and G.G. De Souza, Characterization of “Humping” in the GTA Welding Process Using Infrared Images, J. Mater. Process. Technol., 2015, 223, p 216–224. https://doi.org/10.1016/j.jmatprotec.2015.03.052

    Article  CAS  Google Scholar 

  22. L. Xiao-qing, Z. Hong-xia, Y. Zhi-feng, W. Wen-xian, Z. Ya-guo and Z. Qian-ming, Fatigue Life Prediction of AZ31B Magnesium Alloy and its Welding Joint Through Infrared Thermography, Theor. Appl. Fract. Mech., 2013, 66–67, p 46–52. https://doi.org/10.1016/j.tafmec.2013.10.001

    Article  CAS  Google Scholar 

  23. L. Maio, M. Liberini, D. Campanella, A. Astarita, S. Esposito, S. Boccardi et al., Infrared Thermography for Monitoring Heat Generation in a Linear Friction Welding Process of Ti6Al4V Alloy, Infrared Phys. Technol., 2017, 81, p 325–338. https://doi.org/10.1016/j.infrared.2017.01.023

    Article  CAS  Google Scholar 

  24. T.C. Chen, C.C. Chou, T.Y. Yung, R.F. Cai, J.Y. Huang and Y.C. Yang, A Comparative Study on the Tribological Behavior of Various Thermally Sprayed Inconel 625 Coatings in a Saline Solution and Deionized Water, Surf. Coat. Technol., 2020, 385, 125442. https://doi.org/10.1016/j.surfcoat.2020.125442

    Article  CAS  Google Scholar 

  25. Y. Sun, L. Chen, L. Li and X. Ren, High-Temperature Oxidation Behavior and Mechanism of Inconel 625 Super-Alloy Fabricated by Selective Laser Melting, Opt. Laser Technol., 2020, 132, 106509. https://doi.org/10.1016/j.optlastec.2020.106509

    Article  CAS  Google Scholar 

  26. R. Sun, Y. Shi, Y. Yang, X. Wang and X. Zhou, Microstructure, Element Segregation and Performance of Inconel 625 Metal Layer Deposited by Laser Assisted Ultra-High Frequency Induction Deposition, Surf. Coat. Technol., 2021, 405, 126715. https://doi.org/10.1016/j.surfcoat.2020.126715

    Article  CAS  Google Scholar 

  27. C.P. Alvarães, J.C.F. Jorge, L.F.G. de Souza, L.S. Araújo, M.C. Mendes and H.N. Farneze, Microstructure and Corrosion Properties of Single Layer Inconel 625 Weld Cladding Obtained by the Electroslag Welding Process, J. Mater. Res. Technol., 2020 https://doi.org/10.1016/j.jmrt.2020.11.048

    Article  Google Scholar 

  28. T. Bhujangrao, F. Veiga, A. Suárez, E. Iriondo and F.G. Mata, High-Temperature Mechanical Properties of IN718 Alloy: Comparison of additive Manufactured and Wrought Samples, Curr. Comput. Aided Drug Des., 2020, 10, p 1–13. https://doi.org/10.3390/cryst10080689

    Article  CAS  Google Scholar 

  29. T. Artaza, T. Bhujangrao, A. Suárez, F. Veiga and A. Lamikiz, Influence of Heat Input on the Formation of laves Phases and Hot Cracking in Plasma Arc Welding (PAW) Additive Manufacturing of Inconel 718, Metals (Basel), 2020, 10, p 1–17. https://doi.org/10.3390/met10060771

    Article  CAS  Google Scholar 

  30. M. Tripathy, M. Munther, K. Davami and A. Beheshti, Surface Property Study of Additively Manufactured Inconel 625 at Room Temperature and 510 °C, Manuf. Lett., 2020, 26, p 69–73. https://doi.org/10.1016/j.mfglet.2020.10.001

    Article  Google Scholar 

  31. C.O. Yenusah, Y. Ji, Y. Liu, T.W. Stone, M.F. Horstemeyer, L.Q. Chen et al., Three-Dimensional Phase-field Simulation of γ″ Precipitation Kinetics in Inconel 625 during Heat Treatment, Comput Mater Sci, 2021, 187, 110123. https://doi.org/10.1016/j.commatsci.2020.110123

    Article  CAS  Google Scholar 

  32. S. Sampath Kumar, C.B. Maheswaran and T.D. Bharathi Kannan, Experimental Investigation on a Pulsed TIG Welding of INCONEL 625, Mater Today Proc, 2020 https://doi.org/10.1016/j.matpr.2020.09.724

    Article  Google Scholar 

  33. Corporation SM. Inconel Alloy 625. WwwSpecialmetalsCom 2013:1–28. SMC-066

  34. S.C.S.P. Kumar Krovvidi, S. Goyal and A.K. Bhaduri, Design, Analysis and Experimental Validation of Inconel-625 Bellows for Critical Applications, Mater Today Proc, 2020 https://doi.org/10.1016/j.matpr.2020.06.303

    Article  Google Scholar 

  35. P. Thejasree, N. Manikandan, J.S. Binoj, K.C. Varaprasad, D. Palanisamy and R. Raju, Numerical Simulation and Experimental Investigation on Laser Beam Welding of Inconel 625, Mater Today Proc, 2020 https://doi.org/10.1016/j.matpr.2020.07.042

    Article  Google Scholar 

  36. D. Ren, Z. Xue, Y. Jiang, X. Hu and Y. Zhang, Influence of Single Tensile Overload on Fatigue Crack Propagation Behavior of the Selective Laser Melting Inconel 625 Superalloy, Eng. Fract. Mech., 2020, 239, 107305. https://doi.org/10.1016/j.engfracmech.2020.107305

    Article  Google Scholar 

  37. H.R. Rezaei Ashtiani and R. Zarandooz, The Influence of Welding Parameters on the Nugget Formation of Resistance Spot Welding of Inconel 625 Sheets, Metall. Mater. Trans. A, 2015, 46, p 4095–4105. https://doi.org/10.1007/s11661-015-3030-1

    Article  CAS  Google Scholar 

  38. K.H. Song and K. Nakata, Effect of Precipitation on Post-Heat-Treated INCONEL 625 Alloy After Friction Stir Welding, Mater. Des., 2010, 31, p 2942–2947. https://doi.org/10.1016/j.matdes.2009.12.020

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable. This work was not funded by any grant.

Author information

Authors and Affiliations

Authors

Contributions

NAR and AMA involved in conceptualization. NAR and DB participated in thermography setup. NAR, AMA, and DB participated experimental design and tensile testing. NAR and AMA involved in formal analysis. This article was written and reviewed by NAR and AMA.

Corresponding author

Correspondence to Nathir A. Rawashdeh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Data Availability

Data available upon request.

Code availability

No applicable.

Ethical Approval

This work has never been published before and is currently only submitted to this journal. The results are true, the text is original, and the manuscript it is free of plagiarism.

Consent to Participate

No human subjects were involved in this work. The need for consent does not apply.

Consent to Publish

No individual subjects were involved in this work. The need for consent does not apply.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawashdeh, N.A., Atieh, A.M. & Bani Mostafa, D. In situ Passive Infrared Thermography Application for the Assessment of Localized Mechanical Properties of Tungsten Inert Gas-Welded Inconel 625 Alloys. J. of Materi Eng and Perform 31, 3953–3961 (2022). https://doi.org/10.1007/s11665-021-06506-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06506-5

Keywords

  • inconel 625
  • infrared thermography
  • non-destructive materials characterization
  • TIG welding
  • thermal image