Skip to main content
Log in

Elements for Understanding the Bending and Cyclic Fatigue Behavior of Endodontic Instruments

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

NiTi endodontic instruments are used for root canal treatment, but can sometimes fracture due to bending cyclic fatigue. Three comparable instruments (X2 Protaper Next®, Race® and F6 Skytaper®) were tested under bending (at a 45° angle) and cyclic rotary bending fatigue (at 30°, 45° and 60° angles). Experimental (differential scanning calorimetry (DSC) and scanning electronic microscopy) and numerical approaches were used to investigate the parameters determining their bending behavior and their cyclic fatigue fracture. The results showed that Race® was the stiffer instrument under bending and presented a significant difference compared to the two other instruments at 60° fatigue test. There was a significant difference among all instruments at 45°. These results could be partly explained by the geometry of the instruments and the phase-transition temperatures (DSC). The microscopic observations showed that, in the case of Protaper Next® and F6 Skytaper® instruments, the fracture could come from surface defects resulting from their manufacturing process. This was confirmed by the finite-element analysis on these instruments which revealed a mismatch between the simulated area of maximum bending stress and the experimental fracture zone. Thus, the geometry, alloy and surface condition have an influence on the bending behavior and cyclic fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.B. Alapati, W.A. Brantley, M. Iijima, W.A. Clark, L. Kovarik, C. Buie, J. Liu and W. Ben Johnson, Metallurgical Characterization of a New Nickel-Titanium Wire for Rotary Endodontic Instruments, J. Endod., 2009, 35, p 1589–93. (in English)

    Article  Google Scholar 

  2. M. Aminsobhani, N. Meraji and E. Sadri, Comparison of Cyclic Fatigue Resistance of Five Nickel Titanium Rotary File Systems with Different Manufacturing Techniques, J. Dentist. (Tehran), 2015, 12, p 636–646. (in English)

    Google Scholar 

  3. M.E. Anderson, J.W.H. Price and P. Parashos, Fracture Resistance of Electropolished Rotary Nickel-Titanium Endodontic Instruments, J. Endod., 2007, 33(10), p 1212–1216. (in English)

    Article  Google Scholar 

  4. D.P.A. Aun, I.F.D.C. Peixoto, M. Houmard and V.T.L. Buono, Enhancement of NiTi Superelastic Endodontic Instruments by TiO2 Coating, Mater. Sci. Eng. C., 2016, 68, p 675–680. (in English)

    Article  CAS  Google Scholar 

  5. F. Auricchio and L. Petrini, A Three-Dimensional Model Describing Stress-Temperature Induced Solid Phase Transformations: Solution Algorithm and Boundary Value Problems, Int. J. Numer. Meth. Eng., 2004, 61, p 807–836. (in English)

    Article  Google Scholar 

  6. M.G.A. Bahia, B.M. Gonzalez and V.T.L. Buono, Fatigue Behavior of Nickel-Titanium Superelactic Wires and Endodontic Instruments, Fatigue Fract. Eng. Mater. Struct., 2006, 29, p 518–523. (in English)

    Article  CAS  Google Scholar 

  7. J. Bennett, K.H. Chung, H. Fong, J. Johnson and A. Paranipe, Analysis of Surface Characteristics of ProTaper Universal and ProTaper Next Instruments by Scanning Electron Microscopy, J. Clin. Exp. Dent., 2017, 9(7), p e879–e885. (in English)

    Google Scholar 

  8. L.C. Braga, R.R. Magalhaes, R.K. Nakagawa, C.G. Puente, V.T. Buono and M.G. Bahia, Physical and Mechanical Properties of Twisted or Ground Nickel-Titanium Instruments, Int. Endod. J., 2013, 46(5), p 458–465. (in English)

    Article  CAS  Google Scholar 

  9. L.C. Braga, A.C. Faria Silva, V.T. Buono and M.G. De Azevedo Bahia, Impact of Heat Treatments on the Fatigue Resistance of Different Rotary Nickel-Titanium Instruments, J Endod, 2014, 40, p 1494–1497. (in English)

    Article  Google Scholar 

  10. I.D. Çapar and H. Arslan, A Review of Instrumentation Kinematics of Engine-Driven Nickel-Titanium Instruments, Int. Endod. J., 2016, 49(2), p 119–135. (in English)

    Article  Google Scholar 

  11. D. Celik, T. Tasdemir and K. Er, Comparative Study of Six Rotary Nickel-Titanium Systems and Hand Instrumentation for Root Canal Preparation in Severely Curved Root Canals of Extracted Teeth, J. Endod., 2013, 39(2), p 278–282. (in English)

    Article  Google Scholar 

  12. C.W. Chi, Y.L. Deng, J.W. Lee and C.P. Lin, Fracture Resistance of Dental Nickel-Titanium Rotary Instruments with Novel Surface Treatment: Thin Film Metallic Glass Coating, J. Formos. Med. Assoc., 2017, 116(5), p 373–379. (in English)

    Article  CAS  Google Scholar 

  13. G. Chianello, V.L. Specian, L.C.F. Hardt, D.P. Raldi, J.L. Lage-Marques and S.M. Habitante, Surface Finishing of Unused Rotary Endodontic Instruments: A SEM Study, Braz. Dent. J., 2008, 19(2), p 109–113. (in English)

    Article  Google Scholar 

  14. P.H. Dakappa and C. Mahabale, Analysis of Long-Term Temperature Variations in the Human Body, Crit. Rev. Biomed. Eng., 2015, 43(5–6), p 385–399. (in English)

    Article  Google Scholar 

  15. A.M. Elnaghy and S.E. Elsaka, Assessment of the Mechanical Properties of ProTaper Next Nickel-Titanium Rotary Files, J. Endod., 2014, 40(11), p 1830–1834. (in English)

    Article  Google Scholar 

  16. V. Franco, C. Fabiani, S. Tashieri, A. Malentacca, M. Bortolin and M. Del Fabro, Investigation of the Shaping Ability of Nickel-Titanium Files When Used with a Reciprocation Motion, J. Endod., 2011, 37, p 1398–1401. (in English)

    Article  Google Scholar 

  17. H.J. Goo, S.W. Kwak, J.H. Ha, E. Pedullà and H.C. Kim, Mechanical Properties of Various Heat-Treated Nickel-Titanium Rotary Instruments, J. Endod., 2017, 43(11), p 1872–1877. (in English)

    Article  Google Scholar 

  18. M. Hesami, L. Pino, L. Saint-Sulpice, V. Legrand, M. Kadkhodaei, S. Arbab-Chirani and S. Calloch, Rotary Bending Fatigue Analysis of Shape Memory Alloys, J. Intell. Mater. Syst. Struct., 2018, 29(6), p 1183–1195. (in English)

    Article  CAS  Google Scholar 

  19. M. Hülsmann, D. Donnermeyer and E. Schäfer, A Critical Appraisal of Studies on Cyclic Fatigue Resistance of Engine-Driven Endodontic Instruments, Int. Endod. J., 2019, 52(10), p 1427–1445. (in English)

    Article  Google Scholar 

  20. M.E. Kaval, I.D. Capar, H. Ertas and B.H. Sen, Comparative Evaluation of Cyclic Fatigue Resistance of Four Different Nickel-Titanium Rotary Files with Different Cross-Sectional Designs and Alloy Properties, Clin. Oral. Investig., 2017, 21(5), p 1527–1530. (in English)

    Article  Google Scholar 

  21. H.C. Kim, J. Yum, B. Hur and G.S.P. Cheung, Cyclic Fatigue and Fracture Characteristics of Ground and Twisted Nickel-Titanium Rotary Files, J. Endod., 2010, 37(1), p 147–152. (in English)

    Article  Google Scholar 

  22. G. Kuhn and L. Jordan, Fatigue and Mechanical Properties of Nickel-Titanium Endodontic Instruments, J. Endod., 2002, 28(10), p 716–720. (in English)

    Article  Google Scholar 

  23. M.H. Lee, A. Versluis, B.M. Kim, C.J. Lee, B. Hur and H.C. Kim, Correlation Between Experimental Cyclic Fatigue Resistance and Numerical Stress Analysis for Nickel-Titanium Rotary Files, J. Endod., 2011, 37(8), p 1152–1157. (in English)

    Article  Google Scholar 

  24. P.R. Lokhande, S. Balaguru and G. Deenadayalan, A Review of Contemporary Fatigue Analysis and Biomaterials Studies in Endodontics, Mater. Sci. Forum, 2019, 969, p 193–198. (in English)

    Article  Google Scholar 

  25. H.P. Lopes, C.N. Elias, M.V. Vieira Jr., J.F. Siqueira, M. Mangelli, W.S. Lopes, V.T. Vieira, F.R. Alves, J.C. Oliveira and T.G. Soares, Fatigue Life of Reciproc and Mtwo Instruments Subjected to Static and Dynamic Tests, J. Endod., 2013, 39(5), p 693–696. (in English)

    Article  Google Scholar 

  26. H.P. Lopes, C.N. Elias and M.V. Vieira, Influence of Surface Roughness on the Fatigue Life of Nickel-Titanium Rotary Endodontic Instruments, J. Endod., 2016, 42(6), p 965–968. (in English)

    Article  Google Scholar 

  27. M.B. McGuigan, C. Louca and H.F. Duncan, Clinical Decision-Making After Endodontic Instrument Fracture, Br. Dent. J., 2013, 214(8), p 395–400. (in English 1)

    Article  CAS  Google Scholar 

  28. M.B. McGuigan, C. Louca and H.F. Duncan, Endodontic Instrument Fracture: Causes and Prevention, Br. Dent. J., 2013, 214(7), p 341–348. (in English)

    Article  CAS  Google Scholar 

  29. S. Miyazaki, T. Imai, Y. Igo and K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys, Metall. Mater. Trans. A., 1986, 17, p 115–120. (in English)

    Article  Google Scholar 

  30. Z. Mohammadi, M.K. Soltani, S. Shalavi and S. Asgary, A Review of the Various Surface Treatments of NiTi Instruments, Iran. Endod. J., 2014, 9(4), p 235–240. (in English)

    Google Scholar 

  31. D. Montalvao, Q. Shengwen and M. Freitas, A Study on the Influence of Ni-Ti M-Wire in the Flexural Fatigue Life of Endodontic Rotary Files by Using Finite Element Analysis, Mater. Sci. Eng. C. Mater. Biol. Appl., 2014, 40, p 172–179. (in English)

    Article  CAS  Google Scholar 

  32. E. Ninan and D.W. Berzins, Torsion and Bending Properties of Shape Memory and Superelastic Nickel-Titanium Rotary Instruments, J. Endod., 2013, 39(1), p 101–104. (in English)

    Article  Google Scholar 

  33. K. Otsuka and C.M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge, 1999. (in English)

    Google Scholar 

  34. E.S. Pereira, I.F.C. Peixoto, A.C.D. Viana, I.I. Oliveira, B.M. Gonzales, V.T.L. Buono and M.G.A. Bahia, Physical and Mechanical Properties of a Thermomecachanically Treated NiTi Wire Used in the Manufacture of Rotary Endodontic Instruments, Int. Endod. J., 2012, 45, p 469–474. (in English)

    Article  CAS  Google Scholar 

  35. E.S. Pereira, R.O. Gomes, A.M. Leroy, R. Singh, O.A. Peters, M.G. Bahia and V.T. Buono, Mechanical Behavior of M-Wire and Conventional NiTi Wire Used to Manufacture Rotary Endodontic Instruments, Dent. Mater., 2013, 29(12), p e318–e324. (in English)

    Article  CAS  Google Scholar 

  36. J. Rubio, J.I. Zarzosa and A. Pallares, A Comparative Study of Cyclic Fatigue of 10 Different Types of Endodontic Instruments: An in Vitro Study, Acta. Stomatol. Croat., 2019, 53(1), p 28–36. (in English)

    Article  Google Scholar 

  37. L.A. Santos, J.B. López, E.B. de Las Casas, M.G.A. Bahia and V.T.L. Buono, Mechanical Behavior of Three Nickel-Titanium Rotary Files: A Comparison of Numerical Simulation with Bending and Torsion Tests, Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 37, p 258–263. (in English)

    Article  CAS  Google Scholar 

  38. B. Sattapan, G.J. Nervo, J.E. Palamara and H.H. Messer, Defects in Rotary Nickel-Titanium Files After Clinical Use, J. Endod., 2000, 26, p 61–65. (in English)

    Google Scholar 

  39. A. Scattina, M. Alovisi, D.S. Paolina, D. Pasqualini, N. Scotti, G. Chiandussi and E. Berutti, Prediction of Cyclic Fatigue Life of Nickel-Titanium Rotary Files by Virtual Modeling and Finite Elements Analysis, J. Endod, 2015, 41(11), p 1867–1870. (in English)

    Article  Google Scholar 

  40. E. Schäfer and J. Tepel, Relationship Between Design Features of Endodontic Instruments and Their Properties Part 3. Resistance to Bending and Fracture, J. Endod., 2001, 27(4), p 299–303. (in English)

    Article  Google Scholar 

  41. H. Schilder, Cleaning and Shaping the Root Canal, Dent. Clin. North. Am., 1974, 18(2), p 269–296. (in English)

    CAS  Google Scholar 

  42. M. Serracchiani, G. Miccoli, R. Reda, A. Zanza, F.V. Obino, S. Bhandi, G. Gambarini and L. Testarelli, A Comprehensive In Vitro Comparison of Mechanical Properties of Two Rotary Endodontic Instruments, World J. Dent., 2020, 11(3), p 185–188. (in English)

    Article  Google Scholar 

  43. Y. Shen, H.M. Zhou, Y.F. Zheng, L. Campbell, B. Peng and M. Haapasalo, Metallurgical Characterization of Controlled Memory Wire Nickel-Titanium Rotary Instruments, J. Endod., 2011, 37, p 1566–1571. (in English)

    Article  Google Scholar 

  44. Y. Shen, J.M. Coil, A.J. Mo, Z. Wang, A. Hieawy, Y. Yang and M. Haapasalo, WaveOne Rotary Instruments after Clinical Use, J. Endod., 2016, 42(2), p 186–189. (in English)

    Article  Google Scholar 

  45. C. Siu, J.G. Marshall and J.C. Baumgartner, An In Vivo Comparison of the Root ZX II, the Apex NRG XFR, and Mini Apex Locator by Using Rotary Nickel-Titanium Files, J. Endod., 2009, 35(7), p 962–965. (in English)

    Article  Google Scholar 

  46. E.J.N.L. Silva, J.F.N. Giraldes, C.O. de Lima, V.T.L. Vieira, C.N. Elias and H.S. Antunes, Influence of Heat Treatment on Torsional Resistance and Surface Roughness of Nickel-Titanium Instruments, Int. Endod. J., 2019, 52(11), p 1645–1651. (in English)

    Article  CAS  Google Scholar 

  47. S. Srivastava, M.A. Alghadouni and H.S. Alotheem, Current Strategies in Metallurgical Advances of Rotary NiTi Instruments: A Review, J. Dent. Health Oral Disord. Ther., 2018, 9, p 00333. (in English)

    Google Scholar 

  48. S. Vadhana, B. Saravanakarthikeyan, S. Nandini and N. Velmurugan, Cyclic Fatigue Resistance of RaCe and Mtwo Rotary Files in Continuous Rotation and Reciprocating Motion, J. Endod., 2014, 40(7), p 995–999. (in English)

    Article  Google Scholar 

  49. X. Xu, M. Eng, Y. Zheng and D. Eng, Comparative Study of Torsional and Bending Properties for Six Models of Nickel-Titanium Root Canal Instruments with Different Cross-Sections, J. Endod., 2006, 32, p 372–375. (in English)

    Article  Google Scholar 

  50. G. Yared, Canal Preparation Using Only One NiTi Rotary Instrument: Preliminary Observations, Int. Endod. J., 2008, 41, p 339–344. (in English)

    Article  CAS  Google Scholar 

  51. J. Ye and Y. Gao, Metallurgical Characterization of M-Wire Nickel-Titanium Shape Memory Alloy Used for Endodontic Rotary Instruments During Low-Cycle Fatigue, J. Endod., 2012, 38(1), p 105–107. (in English)

    Article  Google Scholar 

  52. J. Zupanc, N. Vahdat-Pajouh and E. Schäfer, New Thermomechanically Treated NiTi Alloys - A Review, Int. Endod. J., 2018, 51(10), p 1088–1103. (in English)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Gouédard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouédard, C., Pino, L., Petit, S. et al. Elements for Understanding the Bending and Cyclic Fatigue Behavior of Endodontic Instruments. J. of Materi Eng and Perform 31, 3943–3952 (2022). https://doi.org/10.1007/s11665-021-06501-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06501-w

Keywords

Navigation