Skip to main content

Advertisement

Log in

Improved Microstructure and Mechanical Properties of Fe-Cr-Mo-V-N Steel by Controlling the Quenching Temperature

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nitrogen is an alloying element that can significantly improve the yield strength of steel by means of interstitial solid solution strengthening. The effects of quenching temperature on the evolution of second phase and grain size were investigated, as well as tensile properties, impact energy and hardness of a new nitrogen-alloyed Fe-Cr-Mo-V-N steel. The results show that with the increase of quenching temperature, the number and size of the second phase decrease as the high temperature promotes the dissolution and refinement of the second phase. For instance, the number of second phase M23C6 particles decreases gradually with temperature increasing. When the quenching temperature reaches 1050 °C, the grain is refined. Under the same tempering treatment, with the increase of quenching temperature, the tensile properties, impact energy and hardness increase first and then decrease. When the quenching temperature is 1050 °C and the tempering temperature is 180 °C, the obtained mechanical properties are the best. Under this condition, the tensile strength at room temperature is 2110 MPa, the yield strength is 1620 MPa, and the impact energy is 29.1 J, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.J. Lee, S.L. Chong, and Y.W. Chang, Role of Nitrogen in the Cyclic Deformation Behavior of Duplex Stainless Steels, Metall. Mater. Trans. A, 2005, 36(4), p 967.

    Article  Google Scholar 

  2. D. Canadinc, I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, and H.J. Maier, The Role of Nitrogen on the Deformation Response of Hadfield Steel Single Crystals, Metall. Mater. Trans. A, 2003, 34(9), p 1821.

    Article  Google Scholar 

  3. S. Hertzman and M. Jarl, A Thermodynamic Analysis of the Fe-Cr-N System, Metall. Trans. A, 1987, 67(7), p 1745.

    Article  Google Scholar 

  4. C. Uebing, H. Viefhaus, and H.J. Grabke, Formation of CrN Surface Compounds and Surface Precipitates on Fe-15%Cr-N Single Crystals, Appl. Surf. Sci., 1998, 32(4), p 363.

    Article  Google Scholar 

  5. H. Naima, D.M. Lamine, and B. Laurent, Precipitation During the Nitriding in Fe-Cr-C Steels, Mater. Today, 2018, 5(9), p 17501.

    CAS  Google Scholar 

  6. V.A. Shabashov, A.V. Makarov, K.A. Kozlov, V.V. Sagaradze, A.E. Zamatovskii, E.G. Volkova, and S.N. Luchko, Deformation-Induced Dissolution and Precipitation of Nitrides in Austenite and Ferrite of a High-Nitrogen Stainless Steel, Phys. Met. Metallogr., 2018, 119(2), p 180.

    Article  CAS  Google Scholar 

  7. H.P. Qu, H.T. Chen, C.X. Cao, Y.P. Lang, S.X. Zhang, and Y. Cui, Mechanism Research on Accelerated Embrittlement Phenomenon of a Warm Deformed Cr-Mn-Ni-Mo-N Austenitic Stainless Steel, Mater. Sci. Eng. A, 2017, 680, p 1.

    Article  CAS  Google Scholar 

  8. M. Mendez, H. Mancha, G. Mendoza, J.I. Escalante, M.M. Cisneros, and H.F. Lopez, Structure of a Fe-Cr-Mn-Mo-N Alloy Processed by Mechanical Alloying, Metall. Mater. Trans. A, 2002, 33(10), p 3273.

    Article  Google Scholar 

  9. T. Steiner, S.R. Meka, H. Göhring, and E.J. Mittemeijer, Alloying Element Nitride Stability in Iron-Based Alloys: Denitriding of Nitrided Fe-V Alloys, Mater. Sci. Tech., 2017, 33(1), p 23.

    Article  CAS  Google Scholar 

  10. M.H. Ras and P.C. Pistorius, Possible Mechanisms for the Improvement by Vanadium of the Pitting Corrosion Resistance of 18% Chromium Ferritic Stainless Steel, Corros. Sci., 2002, 44, p 2479.

    Article  CAS  Google Scholar 

  11. I.I. Gorbachev, V.V. Popov, and A.Y. Pasynkov, Calculations of the Influence of Alloying Elements (Al, Cr, Mn, Ni, Si) on the Solubility of Carbonitrides in Low-Carbon Low-Alloy Steels, Phys. Met. Metallogr., 2016, 117(12), p 1226.

    Article  CAS  Google Scholar 

  12. Y. Kobayashi, H. Todoroki, and N. Shiga, Behaviour of Nitrogen Dissolution in Fe-Cr-Ni-Mo System Stainless Steels, Ironmak. Steelmak., 2014, 41(6), p 459.

    Article  CAS  Google Scholar 

  13. X. Ma, L. Wang, B. Qin, C. Liu, and S.V. Subramanian, Effect of N on Microstructure and Mechanical Properties of 16Cr5Ni1Mo Martensitic Stainless Steel, Mater. Des., 2012, 34(11), p 74.

    Article  CAS  Google Scholar 

  14. M. Kulka, D. Panfil, J. Michalski, and P. Wach, The effects of Laser Surface Modification on the Microstructure and Properties of Gas-Nitrided 42CrMo4 Steel, Opt. Laser Tech., 2016, 82, p 203.

    Article  CAS  Google Scholar 

  15. R. Amini, M.J. Hadianfard, E. Salahinejad, M. Marasi, and T. Sritharan, Microstructural Phase Evaluation of High-Nitrogen Fe-Cr-Mn Alloy Powders Synthesized by the Mechanical Alloying Process, J. Mater. Sci., 2009, 44(1), p 136.

    Article  CAS  Google Scholar 

  16. A. Makaya and H. Fredriksson, Study on the Production of Fe-Cr-Mn-C-Si Foam by Nitrogen Solubility Difference Between the Liquid and Solid Phases, Mater. Sci. Eng. A, 2007, 413–414, p 533.

    Google Scholar 

  17. L. Luo, W. Li, Y. Gong, L. Wang, and X.J. Jin, Tensile Behavior and Deformation Mechanism of Quenching and Partitioning Treated Steels at Different Deforming Temperatures, J. Iron Steel Res. Int., 2017, 24(11), p 1104.

    Article  Google Scholar 

  18. A. Zafra, L.B. Peral, J. Belzunce, and C. Rodríguez, Effect of Hydrogen on the Tensile Properties of 42CrMo4 Steel Quenched and Tempered at Different Temperatures, Int. J. Hydrogen Energ., 2018, 43(18), p 9068.

    Article  CAS  Google Scholar 

  19. B. Jiang, M. Wu, M. Zhang, F. Zhao, Z. Zhao, and Y. Liu, Microstructural Characterization, Strengthening and Toughening Mechanisms of a Quenched and Tempered Steel: Effect of Heat Treatment Parameters, Mater. Sci. Eng. A, 2017, 707, p 306.

    Article  CAS  Google Scholar 

  20. C. Li, B. Ma, Y. Song, J. Zheng, and J. Wang, Grain refinement of non-magnetic austenitic steels during asymmetrical hot rolling process, J. Mater. Sci. Technol., 2017, 33(12), p 1572.

    Article  CAS  Google Scholar 

  21. Q. Grong, L. Kolbeinsen, C. Eijk, and G. Tranell, Microstructure Control of Steels Through Dispersoid Metallurgy Using Novel Grain Refining Alloys, ISIJ Int., 2006, 46(6), p 824.

    Article  CAS  Google Scholar 

  22. J. Kang, C.N. Li, G. Yuan, and G.D. Wang, Improvement of strength and toughness for hot rolled low-carbon bainitic steel via grain refinement and crystallographic texture, Mater. Lett., 2016, 175, p 157.

    Article  CAS  Google Scholar 

  23. A.L. Greer, Overview: Application of Heterogeneous Nucleation in Grain-Refining of Metals, J. Chem. Phys., 2016, 145(21), p 211704.

    Article  CAS  Google Scholar 

  24. W. Xu, Z. Li, H. Yuan, and G. Zhang, Effect of Second Phase on Grain Growth of Spray Formed Superalloy GH742y, Rare Met., 2011, 30, p 392.

    Article  CAS  Google Scholar 

  25. M.C. Zhao, X. Huang, and A. Atrens, Role of Second Phase Cementite and Martensite Particles on Strength and Strain Hardening in a Plain C-Mn Steel, Mater. Sci. Eng. A, 2012, 549, p 222.

    Article  CAS  Google Scholar 

  26. X. Qi, M. Chen, and J.H. Chen, Effect of Second Phase Particles on Microstructure and Toughness of CGHAZ in Ti-Nb Microalloyed Steel, Chin. J. Mech. Eng., 2005, 41, p 86.

    Article  CAS  Google Scholar 

  27. C. Zang, T. Zhou, H. Zhou, Y. Yuan, P. Zhang, and C. Meng, Effects of Substrate Microstructure on Biomimetic Unit Properties and Wear Resistance of h13 Steel Processed by Laser Remelting, Opt. Laser Tech., 2018, 106, p 299.

    Article  CAS  Google Scholar 

  28. M. Eroğlu and M. Aksoy, Effect of Initial Grain Size on Microstructure and Toughness of Intercritical Heat-Affected Zone of a Low Carbon Steel, Mater. Sci. Eng. A, 2000, 286(2), p 289.

    Article  Google Scholar 

  29. D. Zeng, L. Lu, Y. Gong, Y. Zhang, and J. Zhang, Influence of Solid Solution Strengthening on Spalling Behavior of Railway Wheel Steel, Wear, 2017, 372, p 158.

    Article  Google Scholar 

  30. M. Walbrühl, D. Linder, J. Ågren, and A. Borgenstam, Modelling of Solid Solution Strengthening in Multicomponent Alloys, Mater. Sci. Eng. A, 2017, 700, p 301.

    Article  Google Scholar 

  31. I.J. Moore, J.I. Taylor, M.W. Tracy, M.G. Burke, and E.J. Palmiere, Grain Coarsening Behaviour of Solution Annealed Alloy 625 Between 600–800 °C, Mater. Sci. Eng. A, 2017, 682, p 402.

    Article  CAS  Google Scholar 

  32. D. Ma, M. Friák, J. Pezold, D. Raabe, and J. Neugebauer, Computationally Efficient and Quantitatively Accurate Multiscale Simulation of Solid-Solution Strengthening by Ab initio Calculation, Acta Mater., 2015, 85, p 53.

    Article  CAS  Google Scholar 

  33. R. Song, F. Ye, C. Yang, and S. Wu, Effect of Alloying Elements on Microstructure, Mechanical and Damping Properties of Cr-Mn-Fe-V-Cu High-Entropy Alloys, J. Mater. Sci. Technol., 2018, 34(11), p 2014.

    Article  CAS  Google Scholar 

  34. N.C. Ritter, R. Sowa, J.C. Schauer, D. Gruber, T. Goehler, R. Rettig, and R.F. Singer, Effects of Solid Solution Strengthening Elements Mo, Re, Ru, and W on Transition Temperatures in Nickel-Based Superalloys with High γ′-Volume Fraction: Comparison of Experiment and CALPHAD Calculations, Metall. Mater. Trans. A, 2018, 49(8), p 3206.

    Article  CAS  Google Scholar 

  35. C.L. Zhang, Y.Z. Liu, L.Y. Zhou, and C. Jiang, Secondary Hardening, Austenite Grain Coarsening and Surface Decarburization Phenomenon in Nb-Bearing Spring Steel, J. Iron Steel Res. Int., 2012, 19(3), p 47.

    Article  CAS  Google Scholar 

  36. W. Wang, X. Mao, S. Liu, G. Xu, and B. Wang, Microstructure Evolution and Toughness Degeneration of 9Cr Martensitic Steel After Aging at 550 °C for 20000 h, J. Mater. Sci., 2018, 53(6), p 4574.

    Article  CAS  Google Scholar 

  37. S. Berbenni, V. Favier, and M. Berveiller, Micro-Macro Modelling of the Effects of the Grain Size Distribution on the Plastic Flow Stress of Heterogeneous Materials, Comput. Mater. Sci., 2007, 39(1), p 96.

    Article  CAS  Google Scholar 

  38. P. Lehto, H. Remes, T. Saukkonen, H. Hänninen, and J. Romanoff, Influence of Grain Size Distribution on the Hall-Petch Relationship of Welded Structural Steel, Mater. Sci. Eng. A, 2014, 592(13), p 28.

    Article  CAS  Google Scholar 

  39. T.Y. Kwak and W.J. Kim, Mechanical Properties and Hall-Petch Relationship of the Extruded Mg-Zn-Y Alloys with Different Volume Fractions of Icosahedral Phase, J Alloy Compd., 2019, 770, p 589.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Yunnan Fundamental Research Projects (202101AU070152); Natural Science Research Foundation of Kunming University of Science and Technology (KKZ3202051043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Yuan, X. & Yang, M. Improved Microstructure and Mechanical Properties of Fe-Cr-Mo-V-N Steel by Controlling the Quenching Temperature. J. of Materi Eng and Perform 31, 4195–4203 (2022). https://doi.org/10.1007/s11665-021-06470-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06470-0

Keywords

Navigation