Skip to main content
Log in

Influence of Nanodiamonds on the Mechanical Properties of Glass Fiber-/Carbon Fiber-Reinforced Polymer Nanocomposites

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nanodiamonds (NDs) are the potential fillers to provide excellent mechanical and multi-functional capabilities. The growing interest in using NDs in a variety of fields has prompted researchers to use NDs to prepare various structural composites. Proper dispersion and interfacial adhesion between the NDs and the polymer matrix are required to use NDs as effective reinforcement in polymer nanocomposites. In this study, the mechanical properties of the epoxy-based glass fiber (GF)- and carbon fiber (CF)-reinforced laminated composites with the incorporation of annealed nanodiamonds (NDs) in the epoxy matrix was analyzed. The epoxy resin was modified through the step-wise addition of annealed NDs from 0.1 to 0.5 wt.%. The surface-modified NDs were characterized by SEM, XRD, FTIR, and TEM. The test results predict that the tensile strength was increased by 25, 23%, and tensile modulus increases by 33, 135% for GF- and CF-reinforced hybrid composites corresponding to the addition of 0.3 wt.% NDs into the epoxy matrix. Also, the flexural strength increased by 36, 37%, and flexural modulus increased by 71, 37% for the GF- and the CF-reinforced hybrid composites corresponding to the addition of 0.3 wt.% NDs into the epoxy matrix. These improved properties of hybrid composites are mainly due to the enhanced mechanical interlocking and weak Van der Waals force between the NDs particles that caused the efficient dispersion of NDs in the epoxy matrix and it has been reported in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Tanoglu and A.T. Seyhan, Investigating the Effects of a Polyester Performing Binder on the Mechanical and Ballistic Performance of E-Glass Fiber Reinforced Polyester Composites, Int. J. Adhes. Adhes., 2003, 23, p 1–8.

    Article  CAS  Google Scholar 

  2. J.L. Tsai and M.D. Wu, Organoclay Effect on Mechanical Responses of Glass/Epoxy Nanocomposites, J. Compos. Mater., 2007, 41, p 2513–2528.

    Article  CAS  Google Scholar 

  3. B. Suresha, G. Chandramohan, N.M. Renukappa and Siddaramaiah, Mechanical and Tribological Properties of Glass-Epoxy Composites with and Without Graphite Particulate Filler, J. Appl. Polym. Sci., 2007, 103, p 2472–2480.

    Article  CAS  Google Scholar 

  4. X.Q. Zhang and X.Y. Fan, Interfacial Microstructure and Properties of Carbon Fiber Composites Modified with Graphene Oxide, ACS Appl. Mater. Inter., 2012, 4, p 1543–1552.

    Article  CAS  Google Scholar 

  5. R.J. Zaldivar, J.P. Nokes and H.I. Kim, The Effect of Surface Treatment on Graphite Nanoplatelets used in Fiber Reinforced Composites, J Appl. Polym. Sci., 2014, 131(6), p 1–10.

    Article  Google Scholar 

  6. S. Scholz and L. Kroll, Nanocomposite Glide Surfaces for FRP Hydraulic Cylinders-Evaluation and Test, Compos. Part B Eng., 2014, 61, p 207–213.

    Article  CAS  Google Scholar 

  7. M.T. Kim, K.Y. Rhee, J.H. Lee, D. Hui and A.K.T. Lau, Property Enhancement of a Carbon Fiber/Epoxy Composite by Using Carbon Nanotubes, Compos. Part B Eng., 2011, 42, p 1257–1261.

    Article  Google Scholar 

  8. R.K. Nayak, A. Dash and B. Ray, Effect of Epoxy Modifiers (Al2O3/SiO2/TiO2) on Mechanical Performance of Epoxy/Glass Fiber Hybrid Composites, Procedia. Mater. Sci., 2014, 6, p 1359–1364.

    Article  CAS  Google Scholar 

  9. D. Pedrazzoli, A. Pegoretti and K. Kalaitzidou, Synergistic Effect of Exfoliated Graphite Nanoplatelets and Short Glass Fiber on the Mechanical and Interfacial Properties of Epoxy Composites, Compos. Sci. Technol., 2014, 98, p 15–21.

    Article  CAS  Google Scholar 

  10. D.K. Rathore, R.K. Prusty and D.S. Kumar, Mechanical Performance of CNT-Filled Glass Fiber/Epoxy Composite in In-Situ Elevated Temperature Environments Emphasizing the Role of CNT Content, Compos. Part A, 2016, 84, p 364–376.

    Article  CAS  Google Scholar 

  11. H. Wu and L.T. Drzal, Graphenenanoplatelet Paper as a Light-Weight Composite with Excellent Electrical and Thermal Conductivity and Good Gas Barrier Properties, Carbon, 2012, 50(3), p 1135–1145.

    Article  CAS  Google Scholar 

  12. O.K. Park, S.G. Kim, N.H. You, B.C. Ku, D. Hui and J.H. Lee, Synthesis and Properties of Iodo Functionalized Graphene Oxide/Polyimide Nanocomposites, Compos. Part B Eng., 2014, 56, p 365–371.

    Article  CAS  Google Scholar 

  13. H.B. Lu, Y.T. Yao, W.M. Huang and D. Hui, Noncovalently Functionalized Carbon Fiber by Grafted Self-Assembled Graphene Oxide and the Synergistic Effect on Polymeric Shape Memory Nanocomposites, Compos. Part B Eng., 2014, 67, p 290–295.

    Article  CAS  Google Scholar 

  14. J.H. Lee, J. Marroquin, K.Y. Rhee, S.J. Park and D. Hui, Cryomilling Application of Graphene to Improve Material Properties of Graphene/Chitosan Nanocomposites, Compos. Part B. Eng., 2013, 45, p 682–687.

    Article  CAS  Google Scholar 

  15. H.W. Cai and A.J. Aref, On the Design and Optimization of Hybrid Carbon Fiber Reinforced Polymer-Steel Cable System for Cable-Stayed Bridges, Compos. Part B. Eng., 2015, 68, p 146–152.

    Article  CAS  Google Scholar 

  16. T.J. Lou, S.M.R. Lopes and A.V. Lopes, Factors Affecting Moment Redistribution at Ultimate in Continuous Beams Prestressed with External CFRP Tendons, Compos. Part B. Eng., 2014, 66, p 136–146.

    Article  CAS  Google Scholar 

  17. B.M. Glover, History of Development of Commercial Aircraft and 7E7 Dream Liner, Aviat. Eng., 2004, 592, p 16–21.

    Google Scholar 

  18. J. Pora, Advanced Materials and Technologies for A380 Structure, Airbus Cust. Serv., 2003, 32, p 3–8.

    Google Scholar 

  19. X.Z. Tang, B. Yu, R.V. Hansen, X. Chen and X. Hu, Grafting Low Contents of Branched Polyethylenimine onto Carbon Fibers to Effectively Improve their Interfacial Shear Strength with an Epoxy Matrix, J. Adv. Mater. Inter., 2015, 2, p 1–7.

    Google Scholar 

  20. M.A. Montes-Moran and R.J. Young, Raman Spectroscopy Study of HM Carbon Fibres: Effect of Plasma Treatment on the Interfacial properties of Single Fibre/ Epoxy Composites. Part I: Fibre Characterization, Carbon, 2002, 40, p 845–855.

    Article  CAS  Google Scholar 

  21. Y. Ma, Y. Guo, Y. Fu, Q. Shao, T. Wu, S. Gua, K. Sun, X. Gua, E.K. Wujcik and Z. Gua, Porous Lignin Based Poly (acrylic acid)/Organo-Montmorillonitenanocomposites: Swelling Behaviors and Rapid Removal of Pb (II) Ions, Polymer, 2017, 128, p 12–23.

    Article  Google Scholar 

  22. Z. Wu, S. Gao, L. Chen, D. Jiang, Q. Shao, B. Zhang, Z. Zhai, C. Wang, M. Zhao, Y. Ma, X. Zhang, L. Weng, M. Zhang and Z. Guo, Electrically Insulated Epoxy Nanocomposites Reinforced with Synergistic Core-Shell SiO2@MWCNTs and Montmorillonitebifillers, Macromol. Chem. Phys., 2017, 218, p 1–9.

    Google Scholar 

  23. X. Kornmann, M. Rees, Y. Thomann, A. Necola, M. Barbezat and R. Thomann, Epoxy-Layered Silicate Nanocomposites as Matrix in Glass Fibre-Reinforced Composites, Compos. Sci. Technol., 2005, 65(14), p 2259–2268.

    Article  CAS  Google Scholar 

  24. S. Marras, A. Tsimpliaraki, I. Zuburtikudis and C. Panayiotou, Morphological, Thermal, and Mechanical Characteristics of Polymer/Layered Silicate Nanocomposites: The Role of Filler Modification Level, Polym. Eng. Sci., 2009, 49(6), p 1206–1217.

    Article  CAS  Google Scholar 

  25. R.K. Prusty, S.K. Ghosh, D.K. Rathore and B.C. Ray, Reinforcement Effect of Graphene Oxide in Glass Fibre/Epoxy Composites at In-Situ Elevated Temperature Environments: An Emphasis on Graphene Oxide Content, Compos. Part Appl. Sci. Manuf., 2017, 95, p 40–53.

    Article  CAS  Google Scholar 

  26. P. He, B. Huang, L. Liu, Q. Huang and T. Chen, Preparation Ofmultiscalegraphene Oxide-Carbon Fabric and its Effect on Mechanicalproperties of Hierarchical Epoxy Resin Composite, Polym. Compos., 2016, 37(5), p 1515–1522.

    Article  CAS  Google Scholar 

  27. M. Moniruzzaman, F. Du, N. Romero and K. Winey, Increased Flexural Modulus and Strength in SWNT/Epoxy Composites by a New Fabrication Method, Polymer, 2006, 47, p 293–298.

    Article  CAS  Google Scholar 

  28. V.N. Mochalin and Y. Gogotsi, Nanodiamond–Polymer Composites, Diam. Relat Mater., 2015, 58, p 161–171.

    Article  CAS  Google Scholar 

  29. B. Singh and A. Mohanty, Analysis of Thermal and Mechanical Properties of Annealed Surface Modified Nanodiamond/Epoxy Nanocomposites, Mater. Res. Exp., 2019, 6, p 1–14.

    CAS  Google Scholar 

  30. G. Francucci, S. Palmer and W. Hall, External Compaction Pressure over Vacuum-Bagged Composite Parts: Effect on the Quality of Flax Fiber/Epoxy Laminates, J. Compos. Mater., 2017 https://doi.org/10.1177/0021998317701998

    Article  Google Scholar 

  31. O. Romina, R. Exequiel and A. Vera, Unsaturated Polyester/Bentonitenanocomposites: Influence of Clay Modification on Final Performance, Compos. Part A. Appl. Sci. Manf., 2013, 48, p 137–143.

    Article  Google Scholar 

  32. A.F. Avila and D.T.S. Morais, Modelingnanoclay Effects into Laminates Failure Strength and Porosity, Compos. Struct., 2009, 87, p 55–62.

    Article  Google Scholar 

  33. R. Kotsilkova, D. Fragiadakis and P. Pissis, Reinforcement Effect of Carbon Nanofillers in an Epoxy Resin System: Rheology, Molecular Dynamics, and Mechanical Studies, J. Polym. Sci. Part B Polym. Phys., 2005, 43(5), p 522–533.

    Article  CAS  Google Scholar 

  34. M.S. Tareq, S. Zainuddin, E. Woodside and F. Syed, Investigation of the Flexural and Thermomechanical Properties of Nanoclay/Graphene Reinforced Carbon Fiber Epoxy Composites, J. Mater. Res., 2019, 302, p 1–10.

    Google Scholar 

  35. C.A. Nitai, C. Suman, H.K. Nam, C.M. Naresh, S. Pranab and K. Tapas, Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite, J. Mater. Eng. Perform., 2018, 27(3), p 1138–1147.

    Article  Google Scholar 

  36. D.C. Davis, J.W. Wilkerson, J. Zhu and D.O.O. Ayewah, Improvements in Mechanical Properties of a Carbon Fiber Epoxy Composite Using Nanotube Science and Technology, Compos. Struct., 2010, 92(11), p 2653–2662.

    Article  Google Scholar 

  37. A.K. Pathak, M. Borah, A. Gupta, T. Yokozeki and S.R. Dhakate, Improved Mechanical Properties of Carbon Fiber/Graphene Oxide/Epoxy Hybrid Composites, Compos. Sci. Technol., 2016, 135, p 28–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Mohanty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Mohanty, A. Influence of Nanodiamonds on the Mechanical Properties of Glass Fiber-/Carbon Fiber-Reinforced Polymer Nanocomposites. J. of Materi Eng and Perform 31, 3847–3858 (2022). https://doi.org/10.1007/s11665-021-06469-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06469-7

Keywords

Navigation