Skip to main content
Log in

Electron Backscattered Diffraction Characterization of S900 HSLA Steel Welded Joints and Evolution of Mechanical Properties

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In welding of high-strength steels by conventional methods, it is essential to preserve the strength and ductility close to the base material. The primary focus of this research was to investigate the electron backscattered diffraction (EBSD) characteristics in the coarse grain heat-affected zone (CGHAZ) of S900 base material and correlate them with the changes of mechanical properties of the welded joints. For this purpose, the S900 high-strength low alloy steel was welded with different heat inputs. The thermal cycles were obtained using the Simufact welding simulation software. Scanning electron microscope and EBSD analyses were used to evaluate the microstructure, and tensile tests were used to assess the mechanical properties. The results showed that reducing the welding heat input changed the failure region from the CGHAZ to the base material. The depression of heat input can decrease the deleterious effect of the welding process and lead to achieving superior mechanical properties for the welded joints. Reducing prior austenite grain size in CGHAZ, forming less granular bainite, and maintaining the dislocation density high enough in CGHAZ were the main reasons for improving the mechanical properties of the joints welded at lower heat input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X.J. Sun, S.F. Yuan, Z.J. Xie, L.L. Dong, C.J. Shang and R.D.K. Misra, Microstructure-Property Relationship in a High Strength-High Toughness Combination Ultra-heavy Gauge Offshore Plate Steel: The Significance of Multiphase Microstructure, Mater. Sci. Eng. A, 2017, 689, p 212–219.

    Article  CAS  Google Scholar 

  2. A. Roccisano, S. Nafisi, D. Stalheim and R. Ghomashchi, Effect of TMCP Rolling Schedules on the Microstructure and Performance of X70 Steel, Mater. Charact., 2021, 178, p 111207.

    Article  CAS  Google Scholar 

  3. Y.H. Gao, S.Z. Liu, X.B. Hu, Q.Q. Ren, Y. Li, V.P. Dravid and C.X. Wang, A Novel Low Cost 2000 MPa Grade Ultra-high Strength Steel with Balanced Strength and Toughness, Mater. Sci. Eng. A, 2000, 2019(759), p 298–302.

    Google Scholar 

  4. J.R. Yang, C.Y. Huang and S.C. Wang, The Development of Ultra-low-Carbon Bainitic Steels, Mater. Des, 1999, 13, p 334–338.

    CAS  Google Scholar 

  5. S.M. Hasan, M. Gosh, D. Chakrabarti and S.B. Singh, Development of Continuously Cooled Low-Carbon, Low-Alloy, High Strength Carbide-Free Bainitic Rail Steels Mater, Sci. Eng. A, 2020, 771, p 13859.

    Article  CAS  Google Scholar 

  6. X.L. Wang, Z.Q. Wang, A.R. Huang, J.L. Wang, X.C. Li, S.V. Subramanian, C.J. Shang and Z.J. Xie, Contribution of Grain Boundary Misorientation to Intragranular Globular Austenite Reversion and Resultant in Grain Refinement in a High-Strength Low-Alloy Steel, Mater. Charact., 2020, 169, p 110634.

    Article  CAS  Google Scholar 

  7. H. Alipooramirabad, A. Paradowska, R. Ghomashchi and M. Reid, Investigating the Effects of Welding Process on Residual Stresses, Microstructure and Mechanical Properties in HSLA Steel Welds, J. Manuf. Process, 2017, 28, p 70–81.

    Article  Google Scholar 

  8. T. Schaupp, D. Schroepfer, A. Kromm et al., Welding Residual Stresses in 960 MPa Grade QT and TMCP High-Strength Steels, J. Manuf. Process, 2017, 27, p 226–232.

    Article  Google Scholar 

  9. J.C.F. Jorge, L.F.G. de Souza, M.C. Mendes, I.S. Bott, L.S. Araújo, V.R. dos Santos, J.M.A. Rebello and G.M. Evans, Microstructure Characterization and Its Relationship with Impact Toughness of C-Mn and High Strength Low Alloy Steel Weld Metals: A Review, J. Mater. Res. Technol., 2021, 10, p 471–501.

    Article  CAS  Google Scholar 

  10. M. Shome, Effect of Heat-Input on Austenite Grain Size in the Heat-Affected Zone of HSLA-100 Steel, Mater. Sci. Eng. A, 2007, 445–446, p 454–460.

    Article  CAS  Google Scholar 

  11. R. Cao, Z. Yang, Z. Chan et al., The Determination of the Weakest Zone and the Effects of the Weakest Zone on the Impact Toughness of the 12Cr2Mo1R Welded Joint, J. Manuf. Process, 2020, 50, p 539–546.

    Article  Google Scholar 

  12. J. Zhang, W. Xin, G. Luo, R. Wang, Q. Meng and Sh. Xian, Effect of Welding Heat Input on Microstructural Evolution, Precipitation Behavior and Resultant Properties of the Simulated CGHAZ in High-N V Alloyed Steel, Mater. Charact., 2020, 162, p 110201.

    Article  CAS  Google Scholar 

  13. N. Huda, A. Midawi, J.A. Gianetto and A.P. Gerlich, Continuous Cooling Transformation Behavior and Toughness of Heat-Affected Zones in an X80 Line Pipe Steel, J. Mater. Res. Technol., 2021, 12, p 613–628.

    Article  CAS  Google Scholar 

  14. T. Zhang, W. Liu, Y. Yang, J. Xing, B. Dong, Y. Zhao, Y. Fana and X. Li, Heat Treatment Simulation Investigation on the Mechanical Performance of the Inter-Critical Heated Affected Zone (ICHAZ) in Ship Plate Steel Weld Joint, Appl. Ocean Res, 2020, 101, p 102237.

    Article  Google Scholar 

  15. X. Gan, X. Wan, Y. Zhang, H. Wang, G. Li, G. Xu and K. Wu, Investigation of Characteristic and Evolution of Fine-Grained Bainitic Microstructure in the Coarse-Grained Heat-Affected Zone of Super-High Strength Steel for Offshore Structure, Mater. Charact, 2019, 157, p 109893.

    Article  CAS  Google Scholar 

  16. X. Li, X. Ma, S.V. Subramanian, C. Shang and R.D.K. Misra, Influence of Prior Austenite Grain Size on Martensite-Austenite Constituent and Toughness in the Heat Affected Zone of 700 MPa HIGH Strength Line Pipe Steel, Mater. Sci. Eng. A, 2014, 616, p 141–147.

    Article  CAS  Google Scholar 

  17. B.B. Wu, X.L. Wang, Z.Q. Wang, J.X. Zhao, Y.H. Jin, C.S. Wang, C.J. Shang and R.D.K. Misra, New Insights from Crystallography Into the Effect of Refining Prior Austenite Grain Size on Transformation Phenomenon and Consequent Mechanical Properties of Ultra-High Strength Low Alloy Steel, Mater. Sci. Eng. A, 2019, 745, p 126–136.

    Article  CAS  Google Scholar 

  18. R. Sun, K. Guo, C. Zhang and Q. Wang, Effect of Si Content on the Microstructures and the Impact Properties in the Coarse-Grained Heat-Affected Zone (CGHAZ) of Typical Weathering Steel, Mater. Sci. Eng. A, 2019, 762, p 138082.

    Article  CAS  Google Scholar 

  19. W. Zhao, W. Wang, S. Chen and J. Qu, Effect of Simulated Welding Thermal Cycle on Microstructure and Mechanical Properties of X90 Pipeline Steel, Mater. Sci. Eng. A, 2011, 528, p 7417–7422.

    Article  CAS  Google Scholar 

  20. DCh. Ramachandran, S.D. Kim, J. Moon, Ch.H. Lee, J.H. Chung, E. Biro and Y.D. Park, Classification of Martensite-Austenite Constituents According to its Internal Morphology in High-Strength Low Alloy Steel, Mater. Lett., 2020, 278, p 128422.

    Article  CAS  Google Scholar 

  21. X.L. Wang, Z.Q. Wang, X.P. Ma, S.V. Subramanian, Z.J. Xie, C.J. Shang and X.C. Li, Analysis of Impact Toughness Scatter in Simulated Coarse-Grained HAZ of E550 Grade Offshore Engineering Steel from the Aspect of Crystallographic Structure, Mater. Charact, 2018, 140, p 312–319.

    Article  CAS  Google Scholar 

  22. S. Kou, Welding Metallurgy, 2nd ed. Wiley, 2003.

    Google Scholar 

  23. ASTM E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016, www.astm.org

  24. J.H. Cho, S.H. Han and C.G. Lee, Cooling Effect on Microstructure and Mechanical Properties During Friction Stir Welding of Al-Mg-Si Aluminum Alloys, Mater. Lett, 2016, 180, p 157–161.

    Article  CAS  Google Scholar 

  25. J.R. Yang, C.Y. Huang and S.C. Wangt, The Development of Ultra-Low-Carbon Bainitic Steels, Mater. Des., 1992, 31, p 335–338.

    Article  Google Scholar 

  26. X. Zhang, N. Hansen, Y. Gao and X. Huang, Hall–Petch and Dislocation Strengthening in Graded Nanostructured Steel, Acta Mater., 2012, 60, p 5933–5943.

    Article  CAS  Google Scholar 

  27. Y. You, Ch. Shang, N. Wenjin and S. Subramanian, Investigation on the Microstructure and Toughness of Coarse-Grained Heat Affected Zone in X-100 Multi-phase Pipeline Steel with High Nb Content, Mater. Sci. Eng. A, 2012, 558, p 692–701.

    Article  CAS  Google Scholar 

  28. H. Bhadeshia and R. Honeycombe, Steels, Microstructure and Properties, 4th ed. Butterworth-Heinemann, 2017.

    Google Scholar 

  29. G. Thewlis, Classification and Quantification of Microstructures in Steels, Mater. Sci. Technol., 2004, 20, p 43–160.

    Article  CAS  Google Scholar 

  30. M. Mohammadijoo, J. Valloton, L. Collins, H. Henein and D.G. Ivey, Characterization of Martensite-Austenite Constituents and Micro-Hardness in Intercritical Reheated and Coarse-Grained Heat Affected Zones of API X70 HSLA Steel, Mater. Charact., 2018, 142, p 321–331.

    Article  CAS  Google Scholar 

  31. X. Li, X. Ma, S.V. Subramanian, Ch. Shang and R.D.K. Misra, Influence of Prior Austenite Grain Size on Martensite–Austenite Constituent and Toughness in the Heat Affected Zone of 700 MPa High Strength Linepipe Steel, Mater. Sci. Eng. A, 2014, 616, p 141–147.

    Article  CAS  Google Scholar 

  32. L. Chen, P. Nie, Z. Qu, O.A. Ojo, L. Xia, Z. Li and J. Huang, Influence of Heat Input on the Changes in the Microstructure and Fracture Behavior of Laser Welded 800MPa Grade High-Strength Low-Alloy Steel, J. Manuf. Process, 2020, 50, p 132–141.

    Article  Google Scholar 

  33. N. Huda, Y. Wang, L. Li and A.P. Gerlich, Effect of Martensite-Austenite (MA) Distribution on Mechanical Properties of Inter-critical Reheated Coarse Grain Heat Affected Zone in X80 Linepipe Steel, Mater. Sci. Eng. A, 2019, 765, p 138301.

    Article  CAS  Google Scholar 

  34. P. Zhou, B. Wang, L. Wang, Y. Hu and L. Zhou, Effect of Welding Heat Input on Grain Boundary Evolution and Toughness Properties in CGHAZ of X90 Pipeline Steel, Mater. Sci. Eng. A, 2017, 722, p 112–121.

    Article  CAS  Google Scholar 

  35. R.A. Ricks, P.R. Howell and G.S. Barrite, The Nature of Acicular Ferrite in HSLA Steel Weld Metals, J. Mater. Sci., 1982, 17, p 732–740.

    Article  CAS  Google Scholar 

  36. T.K. Lee, H.J. Kim, B.Y. Kang and S.K. Hwang, Effect of Inclusion Size on the Nucleation of Acicular Ferrite in Welds, ISIJ Int., 2000, 40, p 1260–1268.

    Article  CAS  Google Scholar 

  37. X.L. Wan, H.H. Wang, L. Cheng and K.M. Wu, The Formation Mechanisms of Interlocked Microstructures in Low-Carbon High-Strength Steel Weld Metals, Mater. Charact., 2012, 67, p 41–51.

    Article  CAS  Google Scholar 

  38. DCh. Ramachandran, J. Moon, Ch.H. Lee, S.D. Kim, J.H. Chung, E. Biro and Y.D. Park, Role of Bainitic Microstructures with M-A Constituent on the Toughness of an HSLA Steel for Seismic Resistant Structural Applications, Mater. Sci. Eng. A, 2021, 801, p 140390.

    Article  CAS  Google Scholar 

  39. E.O. Hall, The Deformation and Ageing of Mild Steel, Proc. Phys. Soc. B, 1951, 64, p 747–753.

    Article  Google Scholar 

  40. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25–28.

    CAS  Google Scholar 

  41. R. Ramesh, I. Dinaharan, R. Ravikumar and E.T. Akinlabi, Microstructural Characterization and Tensile Behavior of Nd:YAG Laser Beam Welded Thin High Strength Low Alloy Steel Sheets, Mater. Sci. Eng. A, 2020, 780, p 139178.

    Article  CAS  Google Scholar 

  42. Q. Jia, W. Guo, W. Li, Y. Zhu, P. Peng and G. Zou, Microstructure and Tensile Behavior of Fiber Laser-Welded Blanks of DP600 and DP980 Steels, J. Mater. Process. Technol., 2016, 236, p 73–83.

    Article  CAS  Google Scholar 

  43. ASM handbook. Vol. 12: Fractography, ASM international, 2004

Download references

Acknowledgments

Financial support provided by Shahid Chamran University of Ahvaz through Grant No. SCU.EM98.581 is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Hajjari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narimani, M., Hajjari, E., Eskandari, M. et al. Electron Backscattered Diffraction Characterization of S900 HSLA Steel Welded Joints and Evolution of Mechanical Properties. J. of Materi Eng and Perform 31, 3985–3997 (2022). https://doi.org/10.1007/s11665-021-06454-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06454-0

Keywords

Navigation