Skip to main content

Advertisement

Log in

Microstructure Twinning and Mechanical Properties of Laser Melted Cu-10Sn Alloy for High Strength and Plasticity

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A dense Cu-10Sn alloy bulk specimen was obtained by optimizing the laser powder bed fusion (L-PBF) processing, and the relative density of the specimen reached 99.7%. The grain morphology was mainly the columnar dendrite and inter-dendritic phases generated along the solidification direction. Tensile testing and detailed microstructural characterization were carried out on specimens in the as-built and heat-treated condition. Under the quasi-static tensile condition, the yield strength (σ0.2), ultimate tensile strength (UTS), and the elongation of the as-built Cu-10Sn specimen were 392 MPa, 749 MPa and 29%, respectively. After the solution treatment at 800 °C for 4 h, and aging treatment at 400 °C for 2 hours, the microstructure of the specimen transformed from the columnar grain to equiaxed grain, the dislocation density decrease, and numerous annealing twins were observed in the heat-treated state. Therefore, the quasi-static tensile yield strength (σ0.2) of the specimen was reduced to 245 MPa. However, the UTS and the elongation were increased to 840 MPa and 56%, respectively, due to the interaction between annealing twins and equiaxed grain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Park, C. Park and K. Lee, Implication of Peritectic Composition in Historical High-Tin Bronze Metallurgy, Mater. Charact., 2009, 60, p 1268–1275.

    Article  CAS  Google Scholar 

  2. A. Tavakoli, R. Liu and X.J. Wu, Improved Mechanical and Tribological Properties of Tin–Bronze Journal Bearing Materials with Newly Developed Tribaloy Alloy Additive, Mater. Sci. Eng. A., 2008, 489, p 389–402.

    Article  Google Scholar 

  3. X.H. Chen, Z.D. Wang, D. Ding, H. Tang, L.L. Qiu, X. Luo and G.D. Shi, Strengthening and Toughening Strategies for Tin Bronze Alloy Through Fabricating In-Situ Nanostructured Grains, Mater. Des., 2015, 66, p 60–66.

    Article  CAS  Google Scholar 

  4. X. Li, T. Ivas, S.A.B. Spierings, K. Wegener and C. Leinbach, Phase and Microstructure Formation In Rapidly Solidified Cu-Sn and Cu-Sn-Ti Alloys, J Alloy Compd, 2018, 35, p 1374–1382.

    Article  Google Scholar 

  5. X. Zhao, Q.S. Wei, B. Song, Y. Liu, X.W. Luo, S.F. Wen and Y.S. Shi, Fabrication and Characterization of AISI 420 Stainless Steel Using Selective Laser Melting, Mater. Manuf. Process., 2015, 30, p 1283–1289.

    Article  CAS  Google Scholar 

  6. I. Yadroitsev and I. Smurov, Selective Laser Melting Technology: from the Single Laser Melted Track Stability to 3D Parts of Complex Shape, Phys. Procedia., 2010, 5, p 551–560.

    Article  Google Scholar 

  7. D.D. Gu, W. Meiners, K. Wissenbach and R. Poprawe, Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms, Int. Mater., 2013, 57, p 133–164.

    Article  Google Scholar 

  8. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck and J.P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4V, Acta Mater., 2010, 8, p 3303–3312.

    Article  Google Scholar 

  9. T. Gustmann, A. Neves and U. Kühn, Influence of Processing Parameters on the Fabrication of a Cu-Al-Ni-Mn Shape-Memory Alloy by Selective Laser Melting, Addit. Manuf., 2016, 11, p 23–31.

    CAS  Google Scholar 

  10. G.M. Zhang, C. Chen, X.J. Wang, P.W. Wang, X.Y. Zang, X.P. Gan and K.C. Zhou, Additive Manufacturing of Fine-Structured Copper Alloy By Selective Laser Melting of Pre-Alloyed Cu-15Ni-8Sn Powder, Int. J. Adv. Manuf. Tech., 2018, 6, p 4223–4230.

    Article  Google Scholar 

  11. D.H. Dai and D.D. Gu, Thermal Behavior and Densification Mechanism During Selective Laser Melting of Copper Matrix Composites: Simulation and Experiments, Mater. Des., 2014, 55, p 482–491.

    Article  CAS  Google Scholar 

  12. D.C. Walker, W.F. Caley and M. Brochu, Selective Laser Sintering of Composite Copper–Tin Powders, J. Mater. Res., 2014, 29, p 1997–2005.

    Article  CAS  Google Scholar 

  13. S. Scudino, C. Unterdörfer and K.G. Prashanth, Additive Manufacturing of Cu–10Sn Bronze, Mater. Lett., 2015, 56, p 202–204.

    Article  Google Scholar 

  14. Y. Karabulut, E. Tascioglu, Y. Kayna, Heat Treatment Temperature-Induced Microstructure, Microhardness and Wear Resistance of Inconel 718 Produced by Selective Laser Melting Additive Manufacturing, Optik, 2019

  15. S. Raghavan, B.C. Zhang, P. Wang, C.N. Sun, M.L. Nai, T. Li and J. Wei, Effect of Different Heat Treatments on the Microstructure and Mechanical Properties in Selective Laser Melted INCONEL 718 Alloy, Mater. Manuf. Process., 2017, 32, p 1588–1595.

    Article  CAS  Google Scholar 

  16. D.C. Tsai, M.J. Deng, Z.C. Chang, B.H. Kuo, E.C. Chen, S.Y. Chang and F.S. Shieu, Oxidation Resistance and Characterization of (AlCrMoTaTi)-Six-N Coating Deposited via Magnetron Sputtering, J. Alloy. Compd., 2015, 647, p 179–188.

    Article  CAS  Google Scholar 

  17. H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller and J.N. Wagner, Microstructure and Mechanical Properties at Elevated Temperatures of a New Al-Containing Refractory High-Entropy Alloy Nb-Mo-Cr-Ti-Al, J. Alloy. Compd., 2016, 661, p 206–215.

    Article  CAS  Google Scholar 

  18. Z. Mao, D. Zhang and P. Wei, Manufacturing Feasibility and Forming Properties of Cu-4Sn in Selective Laser Melting, Materials., 2017, 10, p 333.

    Article  Google Scholar 

  19. Z. Tan, X.Y. Zhang, Z.L. Zhou, Z. Zhou, Y. Yang, X.Y. Guo, Z.J. Wang, X. Wu, G.H. Wang and D.Y. He, Thermal Effect on the Microstructure of the Lattice Structure Cu-10Sn Alloy Fabricated Through Selective Laser Melting, J. Alloy. Compd., 2019, 787, p 903–908.

    Article  CAS  Google Scholar 

  20. A.P. Ventura, C.A. Wade and G, Pawlikowski, Mechanical properties and Microstructural Characterization of Cu-4.3 Pct Sn Fabricated By Selective Laser Melting, Metall. Mater. Trans. A., 2016, 48, p 1–10.

    Google Scholar 

  21. N. Saunders and A.P. Miodownik, The Cu-Sn (Copper-Tin) System, Alloy. Phase. Diagr., 1990, 11, p 278–287.

    Article  CAS  Google Scholar 

  22. B. AlMangour and J.M. Yang, Understanding the Deformation Behavior of 17–4 Precipitate Hardenable Stainless Steel Produced By Direct Metal Laser Sintering Using Micropillar Compression and TEM, Int. J. Adv. Manuf. Technol., 2017, 90, p 119–126.

    Article  Google Scholar 

  23. H. Zhang, H.H. Zhu, T. Qi, Z.H. Hu and Z.Y. Zeng, Selective Laser Melting of High Strength Al-Cu-Mg alloys: Processing, Microstructure and Mechanical Properties, Mater. Sci. Eng. A., 2016, 656, p 47–54.

    Article  CAS  Google Scholar 

  24. A. Popovich, V. Sufiiarov, I. Polozovn, E. Borisov, D. Masaylo and A. Orlov, Microstructure and Mechanical Properties of Additive Manufactured Copper Alloy, Mater. Lett., 2016, 17, p 938–941.

    Google Scholar 

  25. K. Kunze, T. Etter, J. Grässlin and V. Shklover, Texture, Anisotropy in Microstructure and Mechanical Properties of IN738LC Alloy Processed by Selective Laser Melting (SLM), Mater. Sci. Eng. A., 2014, 620, p 213–222.

    Article  CAS  Google Scholar 

  26. M. Balbaa, S. Mekhiel, M. Elbestawi and J. Mclsaac, On Selective Laser Melting of Inconel 718: Densification, Surface Roughness, and Residual Stresses, Mater. Des., 2020, 193, p 1–22.

    Article  Google Scholar 

  27. I. Maskery, N.T. Aboulkhair and A.O. Aremu, A Mechanical Property Evaluation of Graded Density Al-Si10-Mg Lattice Structures Manufactured by Selective Laser Melting, Mater. Sci. Eng. A., 2016, 670, p 264–274.

    Article  CAS  Google Scholar 

  28. J. Greggi and W. Soffa, Preliminary Observations of the Flow and Fracture of Copper-Titanium Alloy Single Crystals Containing Coherent Precipitates, Scripta Metal., 1978, 12, p 525–529.

    Article  CAS  Google Scholar 

  29. Y. Zhang, Y.S. Li, N.R. Tao and K. Lu, High Strength and High Electrical Conductivity in Bulk Nanograined Cu Embedded with Nanoscale Twins, Appl. Phys. Lett., 2007, 91, p 282–285.

    Google Scholar 

  30. H.L. Yao, T. Zhen, D.Y. He, Z.L. Zhou, Z. Zhou, Y.F. Xue, L. Cui, L.J. Chen, G.H. Wang and Y. Yang, High Strength and Ductility AlCrFeNiV High Entropy Alloy with Hierarchically Heterogeneous Microstructure Prepared by Selective Laser Melting, J. Alloy. Compd., 2020, 813, p 152196–152196.

    Article  CAS  Google Scholar 

  31. Y. Zhong, L. Liu, S. Wikman, D. Cui and Z. Shen, Intragranular Cellular Segregation Network Structure Strengthening 316L Stainless Steel Prepared by Selective Laser Melting, J. Nucl. Mater., 2016, 470, p 170–178.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the financial support for this work from the General Program of Science and Technology Development Project of Beijing Municipal Education Commission (KM202010005006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingyong He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Guo, X., He, D. et al. Microstructure Twinning and Mechanical Properties of Laser Melted Cu-10Sn Alloy for High Strength and Plasticity. J. of Materi Eng and Perform 31, 2624–2632 (2022). https://doi.org/10.1007/s11665-021-06409-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06409-5

Keywords

Navigation