Skip to main content
Log in

The Effects of Chemical Vapor Aluminizing Process Time and Post-processing for Nickel Aluminide Coating on CMSX-4 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, a nickel aluminide coating was obtained on CMSX-4 via a chemical vapor aluminizing (CVA) technique. The CVA coating process was carried out for 4 and 6 hours at 1070°C to examine the effects of CVA process time on the properties of the nickel aluminide coating. Heat treatment processes were subsequently applied to nickel aluminide-coated samples for 2 hours at 1050 and 1100°C to examine the effects of heat treatment temperature on the coating. The characterization of coated samples was carried out via SEM, EDS, XRD, GDOES and Vickers hardness analyses. The results showed that the increment in CVA process time induced an increase in inter-diffusion zone thickness due to the increased Ni outward diffusion from the CMSX-4 substrate. The additive layer of the four-hour CVA coating is composed of the δ-Ni2Al3 phase due to the dominance of Al inward diffusion. The phase transformation from δ-Ni2Al3 to the desired β-NiAl was observed in four-hour CVA coating structure subsequent to the heat treatment processes. However, the additive layer of six-hour CVA coating consists of the β-NiAl phase both before and after the heat treatment processes. Heat treatment processes increase the thickness of the coatings because they provide increased Al inward and Ni outward diffusion. The results of the Vickers hardness tests demonstrated that the heat treatment processes cause a decrease in the hardness of the additive layer of the four-hour CVA coating from 754 to 578 HV for heat treatment at 1050°C, and to 522 HV for heat treatment at 1100°C due to phase transformation phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X.P. Tao, X.G. Wang, Y.Z. Zhou, K.J. Tan, J.J. Liang, Y.H. Yang, J.L. Liu, J.D. Liu, J.G. Li and X.F. Sun, Effect of Pt-Al Bond-Coat on the Tensile Deformation and Fracture Behaviors of a Second-Generation SX Ni-Based Superalloy at Elevated Temperatures, Surf. Coat. Technol, 2020, 389, p 125640.

    Article  CAS  Google Scholar 

  2. Z. Shang, X. Wei, D. Song, J. Zou, S. Liang, G. Liu, L. Nie and X. Gong, Microstructure and Mechanical Properties of a New Nickel-Based Single Crystal Superalloy, J. Mater. Res. Technol., 2020, 9(5), p 11641–11649.

    Article  CAS  Google Scholar 

  3. H. Yu, W. Xu and S. van der Zwaag, Microstructure and Dislocation Structure Evolution during Creep Life of Ni-Based Single Crystal Superalloys, J. Mater. Sci. Technol., 2020, 45, p 207–214.

    Article  Google Scholar 

  4. L. Cui, H. Su, J. Yu, J. Liu, T. Jin and X. Sun, Temperature Dependence of Tensile Properties and Deformation Behaviors of Nickel-Base Superalloy M951G, Mater. Sci. Eng. A, 2017, 696, p 323–330.

    Article  CAS  Google Scholar 

  5. H. Xu, H. Guo and S. Gong, Thermal Barrier Coatings, in Developments in High-Temperature Corrosion and Protection of Materials, Elsevier, Hoboken, 2008, p 476–491

    Book  Google Scholar 

  6. N.P. Padture, M. Gell and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280–284.

    Article  CAS  Google Scholar 

  7. Q. Liu, S. Huang and A. He, Composite Ceramics Thermal Barrier Coatings of Yttria Stabilized Zirconia for Aero-Engines, J. Mater. Sci. Technol., 2019, 35(12), p 2814–2823.

    Article  Google Scholar 

  8. H. Zhong-Chao, B. Liu, W. Liang, C. Yu-Hang, W. Yan-Wei, M. Yu-Duo, S. Wen-Wei and Y. Yong, Research Progress of Failure Mechanism of Thermal Barrier Coatings at High Temperature via Finite Element Method, Coatings, 2020, 10(8), p 1–25.

    Google Scholar 

  9. Y.M. Wang-Koh, Understanding the Yield Behaviour of L12-Ordered Alloys, Mater. Sci. Technol., 2017, 33(8), p 934–943.

    Article  CAS  Google Scholar 

  10. H. Song, J.M. Lee, J. Yun, S. Park, Y. Kim, K.S. Kum, Y.Z. Lee and C.S. Seok, Oxide Layer Rumpling Control Technology for High Efficiency of Eco-Friendly Combined-Cycle Power Generation System, Int. J. Precis Eng. Manuf - Green Technol., 2020, 7(1), p 185–193.

    Article  Google Scholar 

  11. Z. Yu, D.D. Hass and H.N.G. Wadley, NiAl Bond Coats Made by a Directed Vapor Deposition Approach, Mater. Sci. Eng. A, 2005, 394(1–2), p 43–52.

    Article  Google Scholar 

  12. T. Czeppe and S. Wierzbinski, Structure and Mechanical Properties of NiAl and Ni3Al-Based Alloys, Int. J. Mech. Sci., 2000, 42(8), p 1499–1518.

    Article  Google Scholar 

  13. N.F. Kadir, A. Manap, M. Satgunam and N.M. Afandi, Review on Nickel Aluminide Based Bond Coat Properties and Oxidation Performance for Thermal Barrier Coating (TBC) Application, Int. J. Eng. Technol., 2018, 7(4), p 624–628.

    Article  CAS  Google Scholar 

  14. S. Bose, High Temperature Coatings, 1st ed. Elsevier, Amsterdam, 2007.

    Google Scholar 

  15. B. Dubiel, T. Moskalewicz, L. Swadzba and A. Czyrska-Filemonowicz, Analytical TEM and SEM Characterisation of Aluminide Coatings on Nickel Based Superalloy CMSX-4, Surf. Eng., 2008, 24(5), p 327–331.

    Article  CAS  Google Scholar 

  16. A.S. Wilson, Formation and Effect of Topologically Close-Packed Phases in Nickel-Base Superalloys, Mater. Sci. Technol., 2017, 33(9), p 1108–1118.

    Article  CAS  Google Scholar 

  17. H. Strakov, V. Papageorgiou, R. Bonetti, V. Lieberman and A. Scott, Advanced Chemical Vapor Aluminizing Technology: Co-Deposition Process and Doped Aluminized Coatings, Proc. ASME Turbo Expo, 2012, 5, p 201–207.

    Google Scholar 

  18. M. Farvizi, Cyclic Oxidation Behavior of Uncoated and Aluminum-Rich Nickel Aluminide Coated Rene-80 Superalloy, Adv. Ceram. Prog., 2019, 4(3–4), p 1–7.

    Google Scholar 

  19. M. Salehi Doolabi, B. Ghasemi, S.K. Sadrnezhaad, A. Feizabadi, A. HabibollahZadeh, D. Salehi Doolabi and M. AsadiZarch, Comparison of Isothermal with Cyclic Oxidation Behavior of “Cr-Aluminide” Coating on Inconel 738LC at 900 °C, Oxid. Met., 2017, 87(1–2), p 57–74.

    Article  CAS  Google Scholar 

  20. D.K. Das, V. Singh and S.V. Joshi, Evolution of Aluminide Coating Microstructure on Nickel-Base Cast Superalloy CM-247 in a Single-Step High-Activity Aluminizing Process, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1998, 29(8), p 2173–2188.

    Article  Google Scholar 

  21. K.A. Marino and E.A. Carter, First-Principles Characterization of Ni Diffusion Kinetics in β-NiAl, Phys Rev B - Condens Matter Mater Phys, 2008, 78(18), p 1–11.

    Article  Google Scholar 

  22. A. Squillace, R. Bonetti, N.J. Archer and J.A. Yeatman, The Control of the Composition and Structure of Aluminide Layers Formed by Vapour Aluminising, Surf. Coat. Technol., 1999, 120–121, p 118–123.

    Article  Google Scholar 

  23. Z. Xu, Z. Wang, J. Niu, L. He, R. Mu and K. Wang, Effects of Deposition Temperature on the Kinetics Growth and Protective Properties of Aluminide Coatings, J. Alloys Compd., 2015, 632, p 238–245.

    Article  CAS  Google Scholar 

  24. H. Rafiee, S. Rastegari, H. Arabi and M. Mojaddami, Effects of Temperature and Al-Concentration on Formation Mechanism of an Aluminide Coating Applied on Super Alloy In738lc through a Single-Step High Activity Gas Diffusion Process, Iran. J. Mater. Sci. Eng., 2010, 7(4), p 42–49.

    CAS  Google Scholar 

  25. H. Rafiee, H. Arabi and S. Rastegari, Effects of Temperature and Al-Concentration on Formation Mechanism of an Aluminide Coating Applied on Superalloy IN738LC through a Single Step Low Activity Gas Diffusion Process, J. Alloys Compd., 2010, 505(1), p 206–212.

    Article  CAS  Google Scholar 

  26. A. Eslami, H. Arabi and S. Rastegari, Gas Phase Aluminizing of a Nickel Base Superalloy by a Single Step HTHA Aluminizing Process, Can. Metall. Q., 2009, 48(1), p 91–98.

    Article  CAS  Google Scholar 

  27. F. Bozza, G. Bolelli, C. Giolli, A. Giorgetti, L. Lusvarghi, P. Sassatelli, A. Scrivani, A. Candeli and M. Thoma, Diffusion Mechanisms and Microstructure Development in Pack Aluminizing of Ni-Based Alloys, Surf. Coat. Technol., 2014, 239, p 147–159.

    Article  CAS  Google Scholar 

  28. M. Zielińska, J. Sieniawski, M. Yavorska and M. Motyka, Influence of Chemical Composition of Nickel Based Superalloy on the Formation of Aluminide Coatings, Arch. Metall. Mater., 2011, 56(1), p 193–197.

    Article  Google Scholar 

  29. A. Nowotnik, M. Goral, M. Pytel and K. Dychton, Influence of Coatings Deposition Parameters on Microstructure of Aluminide Coatings Deposited by CVD Method on Ni-Superalloys, Solid State Phenom., 2013, 197, p 95–100.

    Article  Google Scholar 

  30. M. Yavorska and J. Sieniawski, Thermal Stability of Microstructure of Aluminide Layer Deposited by CVD Method on CMSX 4 Nickel Base Superalloy, Mater. Sci. Forum, 2011, 674, p 89–96.

    Article  CAS  Google Scholar 

  31. X. Gong, H. Peng, Y. Ma, H. Guo and S. Gong, Microstructure Evolution of an EB-PVD NiAl Coating and Its Underlying Single Crystal Superalloy Substrate, J. Alloys Compd., 2016, 672, p 36–44.

    Article  CAS  Google Scholar 

  32. A. Bradshaw, N.J. Simms and J.R. Nicholls, Development of Hot Corrosion Resistant Coatings for Gas Turbines Burning Biomass and Waste Derived Fuel Gases, Surf. Coat. Technol., 2013, 216, p 8–22.

    Article  CAS  Google Scholar 

  33. P. Kiruthika, S.K. Makineni, C. Srivastava, K. Chattopadhyay and A. Paul, Growth Mechanism of the Interdiffusion Zone between Platinum Modified Bond Coats and Single Crystal Superalloys, Acta Mater., 2016, 105, p 438–448.

    Article  CAS  Google Scholar 

  34. A. Paul (2017) Diffusion-Controlled Growth and Microstructural Evolution of Aluminide Coatings, arXiv, 13: 167–195.

  35. E. Pauletti and A.S.C.M. d’oliveira, Study on the Mechanisms of Formation of Aluminized Diffusion Coatings on a Ni-Base Superalloy Using Different Pack Aluminization Procedures, J Vac Sci Technol A, 2018, 36(4), p 041504.

    Article  Google Scholar 

  36. M. Mojaddami, S. Rastegari, H. Arabi and H. Rafiee, Effect of Heat Treatment on Coating Microstructure Applied by High Activity Diffusion Process on IN738LC, Surf. Eng., 2012, 28(10), p 772–777.

    Article  CAS  Google Scholar 

  37. J.M. Brossard, B. Panicaud, J. Balmain and G. Bonnet, Modelling of Aluminized Coating Growth on Nickel, Acta Mater., 2007, 55(19), p 6586–6595.

    Article  CAS  Google Scholar 

  38. C.M.F. Rae, M.S. Hook and R.C. Reed, The Effect of TCP Morphology on the Development of Aluminide Coated Superalloys, Mater. Sci. Eng. A, 2005, 396(1–2), p 231–239.

    Article  Google Scholar 

  39. G.W. Goward and D.H. Boone, Mechanisms of Formation of Diffusion Aluminide Coatings on Nickel-Base Superalloys, Oxid. Met., 1971, 3(5), p 475–495.

    Article  CAS  Google Scholar 

  40. T. Sugui, W. Minggang, L. Tang, Q. Benjiang and X. Jun, Influence of TCP Phase and Its Morphology on Creep Properties of Single Crystal Nickel-Based Superalloys, Mater. Sci. Eng. A, 2010, 527(21–22), p 5444–5451.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank TUBITAK Marmara Research Centre Materials Institute for running the CVD system, Mr. Metin Atas for running the CVD equipment at TUBITAK Marmara Research Centre Materials Institute, Mr. A. Nazim for running the SEM at Gebze Technical University, Mr. Omer Faruk Deniz for running the GDOES at Gebze Technical University, and Mr. Omur Can Odabas for running the XRD at TUBITAK Marmara Research Centre Materials Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Arda Inceyer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inceyer, A.A., Güven, G., Demiralay, K. et al. The Effects of Chemical Vapor Aluminizing Process Time and Post-processing for Nickel Aluminide Coating on CMSX-4 Alloy. J. of Materi Eng and Perform 31, 2341–2353 (2022). https://doi.org/10.1007/s11665-021-06323-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06323-w

Keywords

Navigation