Skip to main content

Advertisement

Log in

Performance Analysis of Varying Tool Pin Profile on Friction Stir Welded 2050-T84Al-Cu-Li Alloy Plates

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, different tool pin profiles, namely taper-threaded, triangular, and hybrid are used to join 5-mm-thick 2050-T84 Al-Cu-Li alloy by friction-stir-welding. The experiments were conducted using a one-variable-at-a-time approach by varying the geometry of tool pin profile and kept constant values of tool rotational speed, tool traverse speed, and tool tilt angle as 1400 rpm, 180 mm/min, and 2°, respectively. The objectives of this paper are to determine the effects of varying tool pin profile on force–torque behavior, microstructure, grain size distribution, tensile properties, and mode of tensile failure. It was observed that the hybrid tool produced less flash, less vertical downward force(14340.49N), low average grain size (11.27 µm) in the nugget zone, and larger weld bead area along with higher tensile strength (418.98 MPa), joint efficiency (78.44%), and micro-hardness (147HV0.1) when compared to other tools. The fractography analyses were performed using field-emission scanning electron microscope and observed ductile mode of failure for all friction stir-welded joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Bertrand, H. Robe, D. Texier, Y. Zedan, E. Feulvarch and P. Bocher, Analysis of AA2XXX/ AA7XXX Friction Stir Welds, J. Mater. Process Technol., 2019, 271, p 312–324.

    Article  CAS  Google Scholar 

  2. B. Ahmed and S. Wu, Aluminum-Lithium Alloys (Al-Li-Cu-X)-New Generation Material for Aerospace Applications, Appl. Mech. Mater., 2013, 440, p 104–111.

    Article  CAS  Google Scholar 

  3. S. Kumar, D. Sethi, S. Choudhury, B.S. Roy and S.C. Saha, An Experimental Investigation to the Influence of Traverse Speed on Microstructure and Mechanical Properties of Friction Stir Welded AA2050-T84 Al-Cu-Li Alloy Plates, Mater. Today, 2020, 26(2), p 2062–2068.

    CAS  Google Scholar 

  4. J. Zhang, X.S. Feng, J.S. Gao, H. Huang, Z.Q. Ma and L.J. Guo, Effects of Welding Parameters and Post-Heat Treatment on Mechanical Properties of Friction Stir Welded AA2195-T8 Al-Li Alloy, J. Mater. Sci. Technol., 2018, 34, p 219–227.

    Article  CAS  Google Scholar 

  5. M. Niedzinski, The Evolution of Constellium Al-Li alloy for Space Launch and Crew Module Application, Light. Met. Age, 2019, 77, p 36–42.

    Google Scholar 

  6. A.A. El-Aty, Y. Xu, X. Guo, S. Zhang, Y. Ma and D. Chen, Strengthening Mechanisms, Deformation Behavior, and Anisotropic Mechanical Properties of Al-Li Alloys: A Review, J. Adv. Res., 2018, 10, p 49–67.

    Article  CAS  Google Scholar 

  7. O. Gharbi, N. Birbilis and K. Ogle, Li Reactivity During The Surface Pretreatment of Al-Li Alloy AA2050-T3, Electrochim. Acta., 2017, 243, p 207–219.

    Article  CAS  Google Scholar 

  8. R.J.H.Wanhill, and G.H.Bray, Aero-Structural Design and its Application to Aluminum-Lithium Alloys. In Aluminum-Lithium Alloys: Processing, Properties, and Applications. Prasad E, Gokhale A, and Wanhill H, editors: Butterworth-Heinemann; Elsevier Inc; 2014; p 27- 58

  9. Ph. Lequeu, K.P. Smith and A. Daniélou, Aluminum-Copper-Lithium Alloy 2050 Developed for Medium to Thick Plate, J. Mater. Eng. Perform., 2009, 19, p 841–847.

    Article  CAS  Google Scholar 

  10. S. Kumar, U. Acharya, D. Sethi, T. Medhi, B.S. Roy and S.C. Saha, Efect of Traverse Speed on Microstructure and Mechanical Properties of Friction Stir Welded Third Generation Al–Li Alloy, J. Braz. Soc. Mech. Sci. Eng., 2020, 42(423), p 1–13.

    Google Scholar 

  11. V. Proton, J. Alexis, E. Andrieu, C. Blanc, J. Delfosse, L. Lacroix and G. Odemer, Influence of Post-Welding Heat Treatment on the Corrosion Behavior of a 2050–T3 Aluminum-Copper-Lithium Alloy Friction Stir Welding Joint, J. Electrochem. Soc., 2011, 158(5), p 39–147.

    Article  CAS  Google Scholar 

  12. M.N. Avettand-Fènoël, F. DeGeuser and A. Deschamps, Effect of the Aging on Precipitation Spatial Distribution in Stationary Shoulder Friction Stir Welded AA2050 Alloy, Mater. Charact., 2019, 154, p 193–199.

    Article  CAS  Google Scholar 

  13. B. Cai, Z.Q. Zheng, D.Q. He, S.C. Li and H.P. Li, Friction Stir Weld of 2060 Al-Cu-Li Alloy: Microstructure and Mechanical Properties, J. Alloys Compd., 2015, 649, p 19–27.

    Article  CAS  Google Scholar 

  14. R.S. Mishra and H. Sidhar, Friction Stir Welding of Al–Li Alloys. Chapter-4, Friction Stir Welding of 2XXX Aluminum Alloys Including Al-Li Alloys, Butterworth-Heinemann, Oxford, 2017.

    Google Scholar 

  15. W.M. Thomas, D.G. Staines, I.M. Norris and R. de Frias, Friction Stir Welding Tools and Developments, Weld. World., 2003, 47, p 10–17.

    Article  Google Scholar 

  16. L. Shi and C.S. Wu, Transient Model of Heat Transfer and Material Flow at Different Stages of Friction Stir Welding Process, J. Mater. Process, 2017, 25, p 323–339.

    Google Scholar 

  17. Y.N. Zhang, X. Cao, S. Larose and P. Wanjara, Review of Tools for Friction Stir Welding and Processing, Can. J. Metall. Mater. Sci., 2013, 51(3), p 250–261.

    Google Scholar 

  18. J. Stephen Leon and V. Jayakumar, Effect of Tool Shoulder and Pin Cone Angles in Friction Stir Welding using Non-Circular Tool Pin, J. Appl. Comput. Mech., 2020, 6(3), p 554–563.

    Google Scholar 

  19. S. Ugender, Influence of Tool Pin Profile and Rotational Speed on the Formation Of Friction Stir Welding Zone in AZ31 Magnesium Alloy, J Magnes Alloy, 2018, 6(2), p 205–213.

    Article  CAS  Google Scholar 

  20. Y. Birol and S. Kasman, Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded EN AW 5083 H111 Plates, Mater. Sci. Tech., 2013, 29(11), p 1354–1362.

    Article  CAS  Google Scholar 

  21. K. Elangovan, V. Balasubramanian and M. Valliappan, Influences of Tool Pin Profile and Axial Force on the Formation of Friction Stir Processing Zone in AA6061 Aluminum Alloy, Int. J. Adv. Manuf. Tech., 2007, 38(3–4), p 285–295.

    Google Scholar 

  22. R. Palanivel, P. Koshy Mathews, M. Balakrishnan, I. Dinaharan and N. Murugan, Effect of Tool Pin Profile and Axial Force on Tensile Behavior in Friction Stir Welding of Dissimilar Aluminum Alloys, Adv. Mater. Res., 2012, 415, p 1140–1146.

    Google Scholar 

  23. S Budin, N C Maideen and S Sahudin (2019) Design and Development of Stirring Tool Pin Profile for Reconfigured Milling Machine to Perform Friction Stir Welding Process. In IOP Conference Series: Mater. Sci. Engg. 505: 012089.

  24. Ch. VenkataRao, G. Madhusudhan Reddy and K. SrinivasaRao, Influence of Tool Pin Profile on Microstructure and Corrosion Behavior Of Aa2219 Al–Cu Alloy Friction Stir Weld Nuggets, Def Tech., 2015, 11(3), p 197–208.

    Article  Google Scholar 

  25. M.M. Moradi, H.J. Aval and R. Jamaati, Effect of Tool Pin Geometry and Weld Pass Number on Microstructural, Natural Aging And Mechanical Behavior of SIC-Incorporated Dissimilar Friction-Stir-Welded Aluminium Alloys, Sådhanå., 2019, 44(9), p 1–9.

    CAS  Google Scholar 

  26. A. Singh, V. Kumar and N.K. Grover, Influence of Tool Pin Profiles on Friction Stir Welding With a Gap for AA6082-T6 Aluminum Alloy, Mater. Res. Expr., 2019, 6(8), p 8.

    Google Scholar 

  27. K. Elangovan, V. Balasubramanian and M. Valliappan, Effect of Tool Pin Profile and Tool Rotational Speed on Mechanical Properties of Friction Stir Welded AA6061 Aluminium Alloy, Mater. Manuf. Process., 2008, 23(3), p 251–260.

    Article  CAS  Google Scholar 

  28. B. Singh, K.K. Saxena, P. Singhal and T.C. Joshi, Role of Various Tool Pin Profiles in Friction Stir Welding of AA2024 Alloys, J Mater Eng Perform, 2021 https://doi.org/10.1007/s11665-021-06017-3

    Article  Google Scholar 

  29. H.I. Dawood, K.S. Mohammed, R. Azmi and M.B. Uday, Effect of small Tool Pin Profiles on Microstructures And Mechanical Properties Of 6061 Aluminum Alloy by Friction Stir Welding, T Non Ferr. Metals Soc., 2015, 25(9), p 2856–2865.

    Article  CAS  Google Scholar 

  30. M. Shalin and M. Hiten, Experimental Analysis on Effect of Tool Transverse Feed, Tool Rotational Speed And Tool Pin Profile Type on Weld Tensile Strength OF Friction Stir Welded Joint of AA 6061, Mater Today: Proce, 2018, 5(1), p 487–493.

    Google Scholar 

  31. D.B. Darmadi and M. Talice, Improving the Strength of Friction Stir Welded Joint By Double Side Friction Welding and Varying Pin Geometry, Eng. Sci. Technol. Int. J., 2021, 24(3), p 637–647.

    Google Scholar 

  32. J.C. Hou, H.J. Liu and Y.Q. Zhao, Influences of Rotation Speed on Microstructures and Mechanical Properties of 6061–T6 Aluminum Alloy Joints Fabricated by Self-Reacting Friction Stir Welding Tool, Int. J. Adv. Manuf. Tech., 2014, 73(5–8), p 1073–1079.

    Article  Google Scholar 

  33. M.M. Khalilabad, Y. Zedan, D. Texier, M. Jahazi and P. Bocher, Effect of Tool Geometry and Welding Speed on Mechanical Properties of Dissimilar AA2198–AA2024 FSWed Joint, J. Manuf. Process., 2018, 34, p 86–95.

    Article  Google Scholar 

  34. M Guerra, CSchmidt, J. C. McClure, L. E. Murr, A. C. Nunes, and P. M. Munafo, Metal Flow during Friction Stir Welding, in Friction Stir Welding and Processing, K. V. Jata, R. S. Mishra, S. L. Semiatin, D. P. Field, Editor, 2001, TMS Indianapolis, Indiana, p. 246.

  35. A. Tongne, C. Desrayaud, M. Jahazi and E. Feulvarch, On Material Flow in Friction Stir Welded Al alloys, J. Mater. Proc. Tech., 2017, 239, p 284–296.

    Article  CAS  Google Scholar 

  36. Y.S. Sato, M. Urata, H. Kokawa and K. Ikeda, Hall-Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminum Alloys, Mater. Sci. Eng. A, 2003, 354(1–2), p 298–305.

    Article  CAS  Google Scholar 

  37. C. Du, Q. Pan, S. Chen and S. Tian, Effect of Rolling on the Microstructure And Mechanical Properties Of the T DS-FSW Plate, Mater. Sci. Eng.: A, 2019, 138692, p 1–24.

    Google Scholar 

  38. A. Jagetia, M.S.K.K.Y. Nartu, S. Dasari, A. Sharma, B. Gwalani and R. Banerjee, Ordering-Mediated Local Nano-Clustering Results in Unusually Large Hall-Petch Strengthening Coefficients in High Entropy Alloys, Mater. Res. Lett., 2019, 5, p 213–222.

    Google Scholar 

  39. Y. Li, A.J. Bushby and D.J. Dunstan, The Hall-Petch Effect as a Manifestation of the General Size Effect, Proc. R. Soc. A: Math., Phys. Eng. Sci., 2016, 472(2190), p 20150890.

    Article  CAS  Google Scholar 

  40. L. Chun-Yi, L. Truan-Sheng, C. Li-Hui and H. Fei-Yi, Hall Petch Tensile Yield Stress and Grain Size Relation of Al5Mg05Mn Alloy in Friction-Stir-Processed and Post-Thermal-Exposed Conditions, Mater. Trans., 2014, 55(2), p 357–362.

    Article  CAS  Google Scholar 

  41. N. Guo and M.C. Leu, Additive Manufacturing: Technology, Applications, and Research Needs, Front. Mech. Eng. Prc., 2013, 8(3), p 215–243.

    Article  Google Scholar 

  42. P. Schempp, C.E. Cross, R. Häcker and M.R. Ethmeier, Influence of Grain Size on Mechanical Properties of Aluminum GTA Weld Metal, Weld. World., 2013, 57(3), p 293–304.

    CAS  Google Scholar 

  43. P. Goel, A.N. Siddiquee, N.Z. Khan, A. Mohd, Z.A. Hussain, M.H. Khan and A. Al-Ahmari Abidi, Investigation on the Effect of Tool Pin Profiles on Mechanical and Microstructural Properties of Friction Stir Butt And Scarf Welded Aluminium Alloy 6063, Metals, 2018, 8, p 74.

    Article  CAS  Google Scholar 

  44. C.N. Suresha, B.M. Rajaprakash and S. Upadhya, A Study Of The Effect of Tool Pin Profiles on Tensile Strength of Welded Joints Produced Using Friction Stir Welding Process, Mater. Manuf. Proc., 2011, 26(9), p 1111–1116.

    Article  CAS  Google Scholar 

  45. M. Yuqing, K. Liming, L. Fencheng, C. Yuhua and X. Li, Effect of Tool Pin-Tip Profiles on Material Flow and Mechanical Properties of Friction Stir Welding Thick AA7075-T6 Alloy Joints, Int J Adv Manuf Technol, 2017, 88, p 949–960.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge financial assistance in terms of scholarship to carry the research work from the Ministry of Human Resource and Development (MHRD), Government. of India. The authors also acknowledge the Mechanical Engineering Department, IIT Guwahati, India (for providing the facilities of Material Testing of the welded specimen), and Tripura University (for FE-SEM analysis of tensile fracture specimen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar.

Ethics declarations

Conflict of interest

The author has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Chaubey, S.K., Sethi, D. et al. Performance Analysis of Varying Tool Pin Profile on Friction Stir Welded 2050-T84Al-Cu-Li Alloy Plates. J. of Materi Eng and Perform 31, 2074–2085 (2022). https://doi.org/10.1007/s11665-021-06315-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06315-w

Keywords

Navigation