Skip to main content
Log in

Influence of Fused Deposition Molding Printing Process on the Toughness and Miscibility of Polylactic Acid/Polycaprolactone Blends

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Toughness is a prerequisite for bone scaffold matrix material if such material is to be used in clinic. Blending with polycaprolactone (PCL) is the most used method to improve the toughness of polylactic acid (PLA), while improving their miscibility in the absence of the compatibilizer is always a challenge. To address this issue, the printing process was proposed to improve the miscibility of PLA and PCL. PLA/PCL Blends at different compositions were extruded into filaments and used to print samples. The results of Fourier transform infrared and thermogravimetric analysis indicate that the processing temperatures of the extruder and FDM printer do not cause the degradation of PCL in blend. Following, the influence of FDM printing process on their miscibility was investigated in terms of mechanical properties, surface morphology and melting behavior. Results show that the printing process can effectively improve the miscibility and toughness, and the most appropriate PCL concentration used to blend with PLA is 20 wt.%. At 20 wt.% PCL concentration, the printed blend has an elongation of 189%, which is an increase of about 950% compared with pure PLA. This research not only expands the PLA/PCL blend research, but also provides a process guidance for FDM printing PLA/PCL bone scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Jelonek, S. Li, B. Kaczmarczyk, A. Marcinkowski, A. Orchel, M. Musial-Kulik and J. Kasperczyk, Multidrug PLA-PEG Filomicelles for Concurrent Delivery of Anticancer Drugs-The Influence of Drug-Drug and Drug-Polymer Interactions on Drug Loading and Release Properties, Int. J. Pharm., 2016, 510, p 365–374. https://doi.org/10.1016/j.ijpharm.2016.06.051

    Article  CAS  Google Scholar 

  2. M. Harris, J. Potgieter, R. Archer and K.M. Arif, In-process Thermal Treatment of Polylactic Acid in Fused Deposition Modeling, Mater. Manuf. Process., 2019, 34, p 701–713. https://doi.org/10.1080/10426914.2019.1566611

    Article  CAS  Google Scholar 

  3. S. Liu, J. Yu, H. Li, K. Wang, G. Wu, B. Wang, M. Liu, Y. Zhang, P. Wang, J. Zhang et al., Controllable Drug Release Behavior of Polylactic Acid (PLA) Surgical Suture Coating with Ciprofloxacin (CPFX)-Polycaprolactone (PCL)/Polyglycolide (PGA), Polymers, 2020, 12, p 288. https://doi.org/10.3390/polym12020288

    Article  Google Scholar 

  4. D. Silva, M. Kaduri, M. Poley, O. Adir, N. Krinsky, J. Shainsky-Roitman and A. Schroeder, Biocompatibility, Biodegradation and Excretion of Polylactic Acid (PLA) in Medical Implants and Theranostic Systems, Chem. Eng. J., 2018, 340, p 9–14. https://doi.org/10.1016/j.cej.2018.01.010

    Article  CAS  Google Scholar 

  5. Q. Wei, X. Cai, Y. Guo, G. Wang, Y. Guo, M. Lei, Y. Song, Y. Zhang and Y. Wang, Atomic-Scale and Experimental Investigation on the Micro-Structures and Mechanical Properties of PLA Blending with CMC for Additive Manufacturing, Mater. Des., 2019, 183, 108158. https://doi.org/10.1016/j.matdes.2019.108158

    Article  CAS  Google Scholar 

  6. Q. Wei, G. Wang, M. Lei, Y. Guo, Y. Song, T. Lu and Y. Wang, Multi-Scale Investigation on the Phase Miscibility of Polylactic Acid/O-Carboxymethyl Chitosan Blends, Polymer, 2019, 176, p 159–167. https://doi.org/10.1016/j.polymer.2019.05.030

    Article  CAS  Google Scholar 

  7. H. Saniei and S. Mousavi, Surface Modification of PLA 3D-Printed Implants by Electrospinning with Enhanced Bioactivity and Cell Affinity, Polymer, 2020, 196, 122467. https://doi.org/10.1016/j.polymer.2020.122467

    Article  CAS  Google Scholar 

  8. D. Wu, A. Spanou, A. Diez-Escudero and C. Persson, 3D-Printed PLA/HA Composite Structures as Synthetic Trabecular Bone: A Feasibility Study Using Fused Deposition Modeling, J. Mech. Behav. Biomed. Mater., 2020, 103, 103608. https://doi.org/10.1016/j.jmbbm.2019.103608

    Article  CAS  Google Scholar 

  9. F. Li, Z. Yu and Z. Yang, Failure Characterization of PLA Parts Fabricated by Fused Deposition Modeling Using Acoustic Emission, Rapid Prototyp. J., 2020, 26, p 1177–1182. https://doi.org/10.1108/RPJ-09-2019-0247

    Article  Google Scholar 

  10. M. Neufurth, X. Wang, S. Wang, R. Steffen, M. Ackermann, N.D. Haep, H.C. Schroder and W.E.G. Muller, 3D Printing of Hybrid Biomaterials for Bone Tissue Engineering: Calcium-Polyphosphate Microparticles Encapsulated by Polycaprolactone, Acta Biomater., 2017, 64, p 377–388. https://doi.org/10.1016/j.actbio.2017.09.031

    Article  CAS  Google Scholar 

  11. K.S. Stankevich, V.L. Kudryavtseva, E.N. Bolbasov, E.V. Shesterikov, I.V. Larionova, Y.G. Shapovalova, L.V. Domracheva, A.A. Volokhova, I.A. Kurzina, Y.M. Zhukov et al., Modification of PCL Scaffolds by Reactive Magnetron Sputtering: a Possibility for Modulating Macrophage Responses, ACS Biomater. Sci. Eng., 2020, 6, p 3967–3974. https://doi.org/10.1021/acsbiomaterials.0c00440

    Article  CAS  Google Scholar 

  12. S. Park, J. Kim, M.K. Lee, C. Park, H.D. Jung, H.E. Kim and T.S. Jang, Fabrication of Strong, Bioactive Vascular Grafts with PCL/collagen and PCL/Silica Bilayers for Small-Diameter Vascular Applications, Mater. Des., 2019, 181, 108079. https://doi.org/10.1016/j.matdes.2019.108079

    Article  CAS  Google Scholar 

  13. N.K. Kalita, S.M. Bhasney, C. Mudenur, A. Kalamdhad and V. Katiyar, End-of-Life Evaluation and Biodegradation of Poly(Lactic Acid) (PLA)/Polycaprolactone (PCL)/MICROCRYSTALLINE Cellulose (MCC) Polyblends Under Composting Conditions, Chemosphere, 2020, 247, 125875. https://doi.org/10.1016/j.chemosphere.2020.125875

    Article  CAS  Google Scholar 

  14. P.D. Dias and M.A. Chinelatto, Effect of Poly(Epsilon-Caprolactone-b-Tetrahydrofuran) Triblock Copolymer Concentration on Morphological, Thermal and Mechanical Properties of Immiscible PLA/PCL Blends, J. Renew. Mater., 2019, 7, p 129–138. https://doi.org/10.32604/jrm.2019.00037

    Article  CAS  Google Scholar 

  15. A. Ostafinska, I. Fortelny, J. Hodan, S. Krejcikova, M. Nevoralova, J. Kredatusova, Z. Krulis, J. Kotek and M. Slouf, Strong Synergistic Effects in PLA/PCL Blends: Impact of PIA Matrix Viscosity, J. Mech. Behav. Biomed. Mater., 2017, 69, p 229–241. https://doi.org/10.1016/j.jmbbm.2017.01.015

    Article  CAS  Google Scholar 

  16. Z. Tadmor and C.G. Gogos, Principles of Polymer Processing, Wiley , Hoboken, 2006.

    Google Scholar 

  17. Q. Wei, Y. Zhang, Y. Wang and X. Chen, Aggregation Behavior of Nano-Silica in Polyvinyl Alcohol/Polyacrylamide Hydrogels Based on Dissipative Particle Dynamics, Polymers, 2017, 9(11), p 611. https://doi.org/10.3390/polym9110611

    Article  CAS  Google Scholar 

  18. X.L. Wang and A.P. Chatterjee, Shear-Induced Effects on Miscibility in Polymer Solutions, Mol. Phys., 2002, 100, p 2587–2595. https://doi.org/10.1080/00268970210131370

    Article  CAS  Google Scholar 

  19. J. Wu, N. Chen, F. Bai and Q. Wang, Preparation of Poly(Vinyl Alcohol)/Poly(Lactic Acid)/Hydroxyapatite Bioactive Nanocomposites for Fused Deposition Modeling, Polym. Compos., 2018, 39, p 508–518. https://doi.org/10.1002/pc.24642

    Article  CAS  Google Scholar 

  20. J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan and Y. Ozaki, Crystal Modifications and Thermal Behavior of Poly(l-Lactic Acid) Revealed by Infrared spectroscopy, Macromolecules, 2005, 38, p 8012–8021. https://doi.org/10.1021/ma051232r

    Article  CAS  Google Scholar 

  21. L. de Siqueira, N. Ribeiro, M.B.A. Paredes, L. Grenho, C. Cunha-Reis, E.S. Triches, M.H. Fernandes, S.R. Sousa and F.J. Monteiro, Influence of PLLA/PCL/HA Scaffold Fiber Orientation on Mechanical Properties and Osteoblast Behavior, Materials., 2019, 12, p 3879. https://doi.org/10.3390/ma12233879

    Article  CAS  Google Scholar 

  22. K. del Ángel-Sánchez, C. Borbolla-Torres, L.M. Palacios-Pineda, N.A. Ulloa-Castillo and A. Elias-Zuniga, Development, Fabrication, and Characterization of Composite Polycaprolactone Membranes Reinforced with TiO2 Nanoparticles, Polymers, 1955, 2019, p 11. https://doi.org/10.3390/polym11121955

    Article  CAS  Google Scholar 

  23. H.T. Sasmaze, Novel Hybrid Scaffolds for the Cultivation of Osteoblast Cells, Macromolecules, 2011, 49, p 838–846. https://doi.org/10.1016/j.ijbiomac.2011.07.022

    Article  CAS  Google Scholar 

  24. B.T. Duymaz, F.B. Erdiler, T. Alan, M.O. Aydogdu, A.T. Inan, N. Ekren, M. Uzun, Y.M. Sahin, E. Bulus and F.N. Oktar, 3D Bio-printing of Levan/Polycaprolactone/Gelatin Blends for Bone Tissue Engineering: Characterization of the Cellular Behavior, Eur. Polymer J., 2019, 119, p 426–437. https://doi.org/10.1016/j.eurpolymj.2019.08.015

    Article  CAS  Google Scholar 

  25. H.Y. Ren, Z.L. He, D.L. Li, L. Zhang, L.N. Chen, Y.W. Lou and M.D. Xu, Synergistic Enhanced Yield Strength, Tensile Ductility and Impact Toughness of Polydicyclopentadiene Nanocomposites by Introducing Low Loadings of Di-Functionalized Silica, Polym. Testing, 2019, 79, 106052. https://doi.org/10.1016/j.polymertesting.2019.106052

    Article  CAS  Google Scholar 

  26. H.B. Song, A. Baranek, B.T. Worrell, W.D. Cook and C.N. Bowman, Photopolymerized Triazole-Based Glassy Polymer Networks with Superior Tensile Toughness, Adv. Func. Mater., 2018, 28, p 1801095. https://doi.org/10.1002/adfm.201801095

    Article  CAS  Google Scholar 

  27. C. Samuel, J.M. Raquez and P. Dubois, PLLA/PMMA Blends: A Shear-Induced Miscibility with Tunable Morphologies and Properties?, Polymer, 2013, 54, p 3931–3939. https://doi.org/10.1016/j.polymer.2013.05.021

    Article  CAS  Google Scholar 

  28. J. Gai, H. Li, C. Schrauwen and Hu. Guohua, Dissipative Particle Dynamics Study on the Phase Morphologies of the Ultrahigh molecular Weight Polyethylene/Polypropylene/Poly(Ethylene Glycol) Blends, Polymer, 2009, 50, p 336–346. https://doi.org/10.1016/j.polymer.2008.10.020

    Article  CAS  Google Scholar 

  29. X. Song, P. Shi, S. Zhao, M. Duan, C. Wang and Y. Ma, Dissipative Particle Dynamics Study on the Aggregation Behavior of Asphaltenes Under Shear Fields, Ind. Eng. Chem. Res., 2016, 55, p 9077–9086. https://doi.org/10.1021/acs.iecr.6b02400

    Article  CAS  Google Scholar 

  30. C. Song, Y. Luo, Y. Liu, S. Li, Z. Xi, L. Zhao, L. Cen and E. Lu, Fabrication of PCL Scaffolds by Supercritical CO2 Foaming Based on the Combined Effects of Rheological and Crystallization Properties, Polymers, 2020, 12, p 780. https://doi.org/10.3390/polym12040780

    Article  CAS  Google Scholar 

  31. M.A. Cuiffo, J. Snyder, A.M. Elliott, N. Romero, S. Kannan and G.P. Halada, Impact of the Used Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure, Appl. Sci.-Basel., 2017, 7, p 579. https://doi.org/10.3390/app7060579

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was sponsored by the National Natural Science Foundation of China (Grant No. 51905438), The National Key Research and Development Program of China (Grant No. 2019QY(Y)0502), the Fundamental Research Funds for the Central Universities (Grant No. 31020210506006), the Innovation Platform of Biofabrication (Grant No.17SF0002), and the Key Research and Development program of Shaanxi Province (Grant No. 2018ZDXM-GY-133). We would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for SEM and FTIR tests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinghua Wei or Yanen Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Sun, D., Yang, R. et al. Influence of Fused Deposition Molding Printing Process on the Toughness and Miscibility of Polylactic Acid/Polycaprolactone Blends. J. of Materi Eng and Perform 31, 1338–1345 (2022). https://doi.org/10.1007/s11665-021-06293-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06293-z

Keywords

Navigation