Skip to main content
Log in

Influence of Electrolyte Compositions and Electrical Parameters on Thermal Properties of Micro-Arc Oxidized AZ91 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, AZ91 Mg alloy was micro-arc oxidized using different voltages in silicate- and aluminate/phosphate-based (dual) electrolytes that included K2ZrF6 or Na2ZrO3 as the Zr source for synthesizing ZrO2 in the micro-arc oxidation (MAO) coatings. Structural characterizations were done by using scanning electron microscopy and x-ray diffraction techniques. MAO coating characteristics of different samples were compared by measuring coating thickness, surface roughness, average pore size, and total pore fraction. Both hardness and pull-off tests were conducted to characterize the mechanical properties of the coatings. Thermal conductivity measurements and thermal shock tests were also carried out to evaluate the effect of the electrolyte composition and the type of Zr containing compound. It was found that the equivalent thermal conductivity of the MAOed samples can be reduced up to 30% compared to the bare AZ91 alloy. The decrease of the thermal conductivity was mainly attributed to formation of a thicker and denser MAO coating, and the incorporation of ZrO2 phase into the fabricated MAO coating. Finally, increased thermal shock resistance was strongly correlated with a lower hardness and higher cohesive strength of the MAO coating, which also leads to smaller crack formation and spallation-free surface characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Fan, Y. Wang, B. Zou, L. Gu, W. Huang and X. Cao, Preparation and Corrosion Resistance of MAO/Ni-P Composite Coat on Mg Alloy, Appl. Surf. Sci., 2013, 277, p 272–280. https://doi.org/10.1016/j.apsusc.2013.04.044

    Article  CAS  Google Scholar 

  2. Z.U. Rehman, S.H. Shin, H.T. Lim and B.H. Koo, Transformation of Plasma Electrolytic Oxidation Coatings from Crater to Cluster-Based Structure with Increase in DC Voltage and the Role of ZrO2 Nanoparticles, Surf. Coat. Technol., 2017, 311, p 383–390. https://doi.org/10.1016/j.surfcoat.2016.12.112

    Article  CAS  Google Scholar 

  3. M.J. Wang, C.F. Li and S.K. Yen, Electrolytic MgO/ZrO2 Duplex-Layer Coating on AZ91D Magnesium Alloy for Corrosion Resistance, Corros. Sci., 2013, 76, p 142–153. https://doi.org/10.1016/j.corsci.2013.06.037

    Article  CAS  Google Scholar 

  4. S. Lee, H.J. Ham, S.Y. Kwon, S.W. Kim and C.M. Suh, Thermal Conductivity of Magnesium Alloys in the Temperature Range From −125 C to 400 C, Int. J. Thermophys., 2013, 34, p 2343–2350. https://doi.org/10.1007/s10765-011-1145-1

    Article  CAS  Google Scholar 

  5. A.A. Luo, Magnesium Casting Technology for Structural Applications, J. Magn. Alloys, 2013, 1, p 2–22. https://doi.org/10.1016/j.jma.2013.02.002

    Article  CAS  Google Scholar 

  6. A. Srinivasan, J. Swaminathan, M.K. Gunjan, U.T.S. Pillai and B.C. Pai, Effect of Intermetallic Phases on the Creep Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng., A, 2010, 527, p 1395–1403. https://doi.org/10.1016/j.msea.2009.10.008

    Article  CAS  Google Scholar 

  7. G.B. Darband, M. Aliofkhazraei, P. Hamghalam and N. Valizade, Plasma Electrolytic Oxidation of Magnesium and its Alloys: Mechanism, Properties and Applications, J. Magn. Alloys, 2017, 5, p 74–132. https://doi.org/10.1016/j.jma.2017.02.004

    Article  CAS  Google Scholar 

  8. F. Muhaffel and H. Cimenoglu, Development of Corrosion and Wear Resistant Micro-Arc Oxidation Coating on a Magnesium Alloy, Surf. Coat. Technol., 2019, 357, p 822–832. https://doi.org/10.1016/j.surfcoat.2018.10.089

    Article  CAS  Google Scholar 

  9. P. Wang, J. Li, Y. Guo, J. Wang, Z. Yang and M. Liang, Effect of Zirconia Sol on the Microstructures and Thermal-Protective Properties of PEO Coating on a Cast Al-12Si Piston Alloy, J. Alloy. Compd., 2016, 657, p 703–710. https://doi.org/10.1016/j.jallcom.2015.10.139

    Article  CAS  Google Scholar 

  10. X. Shen, X. Nie, H. Hu and J. Tjong, Effects of Coating Thickness on Thermal Conductivities of Alumina Coatings and Alumina/Aluminum Hybrid Materials Prepared Using Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2012, 207, p 96–101. https://doi.org/10.1016/j.surfcoat.2012.06.009

    Article  CAS  Google Scholar 

  11. K.M. Doleker, Y. Ozgurluk, H. Ahlatci and A.C. Karaoglanli, Evaluation of Oxidation and Thermal Cyclic Behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 TBCs, Surf. Coat. Technol., 2019, 371, p 262–275. https://doi.org/10.1016/j.surfcoat.2018.11.055

    Article  CAS  Google Scholar 

  12. C. Wang, J. Hao, Y. Xing, C. Guo and H. Chen, High Temperature Oxidation Behavior of TiO2+ZrO2 Composite Ceramic Coatings Prepared by Microarc Oxidation on Ti6Al4V Alloy, Surf. Coat. Technol., 2015, 261, p 201–207. https://doi.org/10.1016/j.surfcoat.2014.11.031

    Article  CAS  Google Scholar 

  13. H. Li, Y. Sun and J. Zhang, Effect of ZrO 2 Particle on the Performance of Micro-Arc Oxidation Coatings on Ti6Al4V, Appl. Surf. Sci., 2015, 342, p 183–190. https://doi.org/10.1016/j.apsusc.2015.03.051

    Article  CAS  Google Scholar 

  14. T. Akatsu, T. Kato, Y. Shinoda and F. Wakai, Thermal Barrier Coating Made of Porous Zirconium Oxide on a Nickel-Based Single Crystal Superalloy Formed by Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2013, 223, p 47–51. https://doi.org/10.1016/j.surfcoat.2013.02.026

    Article  CAS  Google Scholar 

  15. Y. Zhong, L. Shi, M. Li, F. He and X. He, Characterization and Thermal Shock Behavior of Composite Ceramic Coating Doped With ZrO2 Particles on TC4 By Micro-Arc Oxidation, Appl. Surf. Sci., 2014, 311, p 158–163. https://doi.org/10.1016/j.apsusc.2014.05.031

    Article  CAS  Google Scholar 

  16. B.L. Krit, R.Z. Wu, N.V. Morozova, I.O. Kondratsky and V.M. Medvetskova, Coating Effect on Thermal-Physical and Corrosion Characteristics of Ultralight Mg-Based Alloy, IOP Conf. Series Mater. Sci. Eng., 2020, 918, p 012111. https://doi.org/10.1088/1757-899X/918/1/012111

    Article  CAS  Google Scholar 

  17. J.A. Curran and T.W. Clyne, The Thermal Conductivity of Plasma Electrolytic Oxide Coatings on Aluminium and Magnesium, Surf. Coat. Technol., 2005, 199, p 177–183. https://doi.org/10.1016/j.surfcoat.2004.11.045

    Article  CAS  Google Scholar 

  18. H. Luo, Q. Cai, J. He and B. Wei, Preparation and Properties of Composite Ceramic Coating Containing Al2O3-ZrO2-Y2O3 on AZ91D Magnesium Alloy by Plasma Electrolytic Oxidation, Curr. Appl. Phys., 2009, 9, p 1341–1346. https://doi.org/10.1016/j.cap.2009.02.017

    Article  Google Scholar 

  19. S. Wang, X. Liu, X. Yin and N. Du, Surface & Coatings Technology In fl uence of Electrolyte Components on the Microstructure and Growth Mechanism of Plasma Electrolytic Oxidation Coatings on 1060 Aluminum Alloy, Surf. Coat. Technol., 2020, 381, p 125214. https://doi.org/10.1016/j.surfcoat.2019.125214

    Article  CAS  Google Scholar 

  20. V. Dehnavi, B.L. Luan, D.W. Shoesmith, X.Y. Liu and S. Rohani, Effect of Duty Cycle and Applied Current Frequency on Plasma Electrolytic Oxidation (PEO) Coating Growth Behavior, Surf. Coat. Technol., 2013, 226, p 100–107. https://doi.org/10.1016/j.surfcoat.2013.03.041

    Article  CAS  Google Scholar 

  21. M. Babaei, C. Dehghanian and M. Vanaki, Effect of Additive on Electrochemical Corrosion Properties of Plasma Electrolytic Oxidation Coatings Formed on CP Ti Under Different Processing Frequency, Appl. Surf. Sci., 2015, 357, p 712–720. https://doi.org/10.1016/j.apsusc.2015.09.059

    Article  CAS  Google Scholar 

  22. B. Mingo, R. Arrabal, M. Mohedano, Y. Llamazares, E. Matykina, A. Yerokhin and A. Pardo, Influence of Sealing Post-Treatments on the Corrosion Resistance of PEO Coated AZ91 Magnesium Alloy, Appl. Surf. Sci., 2018, 433, p 653–667. https://doi.org/10.1016/j.apsusc.2017.10.083

    Article  CAS  Google Scholar 

  23. Z. Shahri, S.R. Allahkaram, R. Soltani and H. Jafari, Optimization of Plasma Electrolyte Oxidation Process Parameters for Corrosion Resistance of Mg Alloy, J. Magn. Alloys., 2018 https://doi.org/10.1016/j.jma.2018.10.001

    Article  Google Scholar 

  24. L. An, Y. Ma, Y. Liu, L. Sun, S. Wang and Z. Wang, Effects of Additives, Voltage and their Interactions on PEO Coatings Formed on Magnesium Alloys, Surf. Coat. Technol., 2018, 354, p 226–235. https://doi.org/10.1016/j.surfcoat.2018.09.026

    Article  CAS  Google Scholar 

  25. H.N. Vatan, R. Ebrahimi-kahrizsangi and M. Kasiri-asgarani, Structural, Tribological and Electrochemical Behavior of SiC Nanocomposite Oxide Coatings Fabricated by Plasma Electrolytic Oxidation (PEO) on AZ31 Magnesium Alloy, J. Alloy. Compd., 2016, 683, p 241–255. https://doi.org/10.1016/j.jallcom.2016.05.096

    Article  CAS  Google Scholar 

  26. Z.U. Rehman, S.H. Shin, I. Hussain and B.H. Koo, Structure and Corrosion Properties of the Two-Step PEO Coatings Formed on AZ91D Mg Alloy in K2ZrF6-Based Electrolyte Solution, Surf. Coat. Technol., 2016, 307, p 484–490. https://doi.org/10.1016/j.surfcoat.2016.09.030

    Article  CAS  Google Scholar 

  27. M. Babaei, C. Dehghanian, P. Taheri and M. Babaei, Surface & Coatings Technology Effect of Duty Cycle and Electrolyte Additive on Photocatalytic Performance of TiO2–ZrO2 Composite Layers Prepared on CP Ti by Micro Arc Oxidation Method, Surf. Coat. Technol., 2016, 307, p 554–564. https://doi.org/10.1016/j.surfcoat.2016.09.050

    Article  CAS  Google Scholar 

  28. J. Liu, Y. Li, Y. Li, S. Sang and S. Li, Effects of Pore Structure on Thermal Conductivity and Strength of Alumina Porous Ceramics Using Carbon Black as Pore-Forming Agent, Ceram. Int., 2016, 42, p 8221–8228. https://doi.org/10.1016/j.ceramint.2016.02.032

    Article  CAS  Google Scholar 

  29. M.A.L. Braulio, M. Rigaud, A. Buhr, C. Parr and V.C. Pandolfelli, Spinel-Containing Alumina-Based Refractory Castables, Ceram. Int., 2011 https://doi.org/10.1016/j.ceramint.2011.03.049

    Article  Google Scholar 

  30. L.I.U. Feng, Y.J. Li, J.J. Gu, Q.S. Yan, L.U.O. Qiang and Q.Z. Cai, Preparation and Performance of Coating on Rare-Earth Compounds-Immersed Magnesium Alloy by Micro-Arc Oxidation, Trans. Nonferr. Metals Soc. China, 2012, 22(7), p 1647–1654. https://doi.org/10.1016/S1003-6326(11)61368-X

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge Dr. H. Mindivan from Bilecik Seyh Edebali University Central Research Laboratory for his support during SEM and EDS analyses. The authors also acknowledge the financial support provided by Istanbul Technical University as a part of the ITU Scientific Research Projects with the Grant No. 39644.

Author information

Authors and Affiliations

Authors

Contributions

ES contributed to investigation, formal analysis, and writing—original draft; FM contributed to investigation, formal analysis, and writing—review and editing; YY contributed to investigation; ASV contributed to resources; MB contributed to conceptualization, methodology, and writing—review and editing

Corresponding author

Correspondence to Murat Baydoğan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvi, E., Muhaffel, F., Yürektürk, Y. et al. Influence of Electrolyte Compositions and Electrical Parameters on Thermal Properties of Micro-Arc Oxidized AZ91 Alloy. J. of Materi Eng and Perform 31, 1667–1678 (2022). https://doi.org/10.1007/s11665-021-06292-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06292-0

Keywords

Navigation