Skip to main content

Advertisement

Log in

Mechanical Properties of Selective Laser Melted CoCr Alloys: A Review

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Cobalt-chromium (CoCr) alloys are widely known for their biomedical applications due to their numerous favorable characteristics. The fabrication process for these alloys is crucial and plays an important role in the mechanical and metallurgical properties. Powder bed fusion (PBF) is a type of additive manufacturing technique, which includes selective laser melting (SLM) process as one of the 3D printing techniques that is used for CoCr fabrication. There are different SLM process parameters that affect the mechanical properties of the built part. The present work is the review of different parameters that affect the component manufactured using SLM. It was found that the laser scanning speed was the most influential factor for the density and hardness of the SLM formed CoCr alloys. It was also found that the mechanical properties of the SLM manufactured CoCr alloys are higher as compared to the cast alloys due to the dense, compact, homogeneous, and finer microstructure formed during the SLM process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2016, with permission from Elsevier

Fig. 4

Copyright 2018, with permission from Elsevier

Fig. 5

Copyright 2016, with permission from Elsevier

Fig. 6

Copyright 2013, with permission from Elsevier

Fig. 7

Copyright 2012, with permission from Elsevier

Fig. 8

Copyright 2015, with permission from Elsevier

Fig. 9

Copyright 2015, with permission from Elsevier

Fig. 10

Copyright 2018, with permission from Elsevier

Fig. 11
Fig. 12

Copyright 2018, with permission from Elsevier

Fig. 13
Fig. 14
Fig. 15
Fig. 16

Copyright 2016, with permission from Elsevier

Fig. 17

Copyright 2016, with permission from Elsevier

Similar content being viewed by others

References

  1. M. Ameer, E. Khamis and M. Al-Motlaq, Electrochemical Behaviour of Recasting Ni–Cr and Co–Cr Non-Precious Dental Alloys, Corros Sci., 2004, 46, p 2825–2836.

    Article  CAS  Google Scholar 

  2. S.M. Gaytan, L.E. Murr, D.A. Ramirez, B.I. Machado, E. Martinez, D.H. Hernandez, J.L. Martinez, F. Medina and R.B. Wicker, A TEM Study of Cobalt-Base Alloy Prototypes Fabricated by EBM, Mater Sci Appl., 2011, 2, p 355–363.

    CAS  Google Scholar 

  3. X.Z. Xin, J. Chen, N. Xiang and B. Wei, Surface Properties and Corrosion Behavior of Co-Cr Alloy Fabricated with Selective Laser Melting Technique, Cell Biochem Biophys, 2013, 67, p 983–990.

    Article  CAS  Google Scholar 

  4. K. Monroy, J. Delgado and J. Ciurana, Study of the Pore Formation on CoCrMo Alloys by Selective Laser Melting Manufacturing Process, Proc. Eng., 2013, 63, p 361–369.

    Article  CAS  Google Scholar 

  5. K.P. Monroy, J. Delgado, L. Sereno, J. Ciurana and N.J. Hendrichs, Effects of the Selective Laser Melting Manufacturing Process on the Properties of CoCrMo Single Tracks, Met. Mater. Int., 2014, 20, p 873–884.

    Article  CAS  Google Scholar 

  6. Y.S.A. Jabbaria, T. Koutsoukis, X. Barmpagadaki and S. Zinelis, Metallurgical and Interfacial Characterization of PFM Co-Cr Dental Alloys Fabricated Via Casting, Mill Select. Laser Melti. Dental Mater., 2014, 30, p 79–88.

    Google Scholar 

  7. Annual Book of ASTM Standards, Section Thirteen, Medical devices and services, (2010)

  8. R.G. Craig, J.M. Powers and J.C. Wataha, Dental Materials: Properties and Manipulation, 7th ed. Mosby, Missouri, (2000)

    Google Scholar 

  9. J.C. Wataha, Alloys for prosthodontic restorations, J. Prosthet. Dent., 2002, 87, p 351–363.

    Article  Google Scholar 

  10. J.M. Powers and R.L. Sakaguchi, Craig’s Restorative Dental Materials, 12th ed. Mosby, Missouri, (2006)

    Google Scholar 

  11. W. O’brien, Dental Materials and Their Selection. 4th Ed. Chicago: Quintessence, (2008)

  12. J. C. Wataha and G. Schmalz, Dental Alloys. In: Biocompatibility of Dental Materials. 1st Ed. Springer: Berlin-Heidelberg, (2009)

  13. D. Jevremovic, V. Kojic, G. Bogdanovic, T. Puskar, D. Eggbeer, D. Thomas and R. Williams, A Selective Laser Melted Co–Cr Alloy Used for the Rapid Manufacture of Removable Partial Denture Frameworks – Initial Screening Of Biocompatibility, J. Serb. Chem. Soc., 2011, 76, p 43–52.

    Article  CAS  Google Scholar 

  14. D. Xu, N. Xiang and B. Wei, The Marginal Fit of Selective Laser Melting-Fabricated Metal Crowns: an in Vitro Study, J Prosthet Dent., 2014, 112, p 1437–1440.

    Article  Google Scholar 

  15. Z. Huang, L. Zhang, J. Zhu and X. Zhang, Clinical Marginal and Internal Fit of Metal Ceramic Crowns Fabricated with a Selective Laser Melting Technology, J Prosthet Dent., 2015, 113, p 623–627.

    Article  Google Scholar 

  16. H. Nesse, D.M.A. Ulstein, M.M. Vaage and M. Øilo, Internal and Marginal Fit of Cobalt-Chromium Fixed Dental Prostheses Fabricated with 3 Different Techniques, J. Prosthet. Dent., 2015, 114, p 686–692.

    Article  CAS  Google Scholar 

  17. H.R. Kim, S.H. Jang, Y.K. Kim, J.S. Son, B.K. Min, K.H. Kim and T.Y. Kwon, Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three Cad/Cam-Based Processing Techniques, Materials, 2016, 9, p 596–609.

    Article  Google Scholar 

  18. C. Montero-Ocampo, M. Talavela and H. Lopez, Effect of Alloy Preheating on the Mechanical Properties of As-Cast Co–Cr–Mo–C Alloys, Metall. Mater. Trans. A., 1999, 30, p 611–620.

    Article  Google Scholar 

  19. J. R. Davis, Handbook of Materials for Medical Devices. 2nd Ed. ASM International: Oh, (2003)

  20. A. Kocijan, I. Milosev and B. Pihlar, Cobalt-Based Alloys for Orthopedic Applications Studied by Electrochemical and Xps Analysis, J. Mater. Sci. Mater. Med., 2004, 15, p 643–650.

    Article  CAS  Google Scholar 

  21. B. Vandenbroucke and J.P. Kruth, Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts, Rapid Prototyp. J., 2007, 13, p 196–203.

    Article  Google Scholar 

  22. S. Limmahakhun, A. Oloyede, N. Chantarapanich, P. Jiamwatthanachai, K. Sitthiseripratip, Y. Xiao and C. Yan, Alternative Designs of Load−Sharing Cobalt Chromium Graded Femoral Stems, Mater. Today Commun., 2017, 12, p 1–10.

    Article  CAS  Google Scholar 

  23. S. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao and C. Yan, Stiffness and Strength Tailoring of Cobalt Chromium Graded Cellular Structures for Stress-Shielding Reduction, Mater. Des., 2017, 114, p 633–641.

    Article  CAS  Google Scholar 

  24. C. Han, C. Yan, S. Wen, T. Xu, S. Li, J. Liu, Q. Wei and Y. Shi, Effects of the Unit Cell Topology on the Compression Properties of Porous Co-Cr Scaffolds Fabricated Via Selective Laser Melting, Rapid Prototyp. J., 2017, 23, p 16–27.

    Article  Google Scholar 

  25. A.G. Demir and B. Previtali, Additive Manufacturing of Cardiovascular CoCr Stents by Selective Laser Melting, Mater. Des., 2017, 119, p 338–350.

    Article  CAS  Google Scholar 

  26. V. Finazzi, A.G. Demir, C.A. Biffi, C. Chiastra, F. Migliavacca, L. Petrini and B. Previtali, Design Rules for Producing Cardiovascular Stents by Selective Laser Melting: Geometrical Constraints and Opportunities, Struct. Integr. Proc., 2019, 15, p 16–23.

    Google Scholar 

  27. V. Finazzi, A.G. Demir, C.A. Biffi, C. Chiastra, F. Migliavacca, L. Petrini and B. Previtali, Design and Functional Testing of a Novel Balloon Expandable Cardiovascular Stent in CoCr Alloy Produced by Selective Laser Melting, J. Manuf. Process., 2020, 55, p 161–173.

    Article  Google Scholar 

  28. I. Gibson, Advanced Manufacturing Technology for Medical Applications, Wiley, WEST Sussex, England, (2005)

    Book  Google Scholar 

  29. I.D. Harris, Additive Manufacturing: a Transformational Advanced Manufacturing Technology, Adv. Mater. Process., 2012, 5, p 25–29.

    Google Scholar 

  30. R. Bibb, D. Eggbeer and R.J. Williams, Rapid Manufacture of Removable Partial Denture Frameworks, Rapid Prototyp. J., 2006, 12, p 95–99.

    Article  Google Scholar 

  31. R. Bibb, D. Eggbeer, R.J. Williams and A. Woodward, Trial Fitting of a Removable Partial Denture Framework Made Using Computer-Aided Design and Rapid Prototyping Techniques, J. Eng. Med., 2006, 220, p 793–797.

    Article  CAS  Google Scholar 

  32. D. Gu, Y.C. Hagedorn, W. Meiners, G. Meng, B.R.J. Santos, K. Wissenbach and R. Poprawe, Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium, Acta Mater., 2012, 60, p 3849–3860.

    Article  CAS  Google Scholar 

  33. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck and J.P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58, p 3303–3312.

    Article  CAS  Google Scholar 

  34. O. Kozo and S. Masanori, Flexible Manufacturing of Metallic Products by Selective Laser Melting of Powder, Int. J. Mach. Tool. Manuf., 2006, 46, p 1188–1193.

    Article  Google Scholar 

  35. Y. Yang, J.B. Lu, Z.Y. Luo and D. Wang, Accuracy and Density Optimization in Directly Fabricating Customized Orthodontic Production by Selective Laser Melting, Rapid Prototyp J, 2012, 18, p 482–489.

    Article  Google Scholar 

  36. A. Gebhardt, F.M. Schmidt, J.S. Hotter, W. Sokalla and P. Sokalla, Additive Manufacturing by Selective Laser Melting, the Realizer Desktop Machine and its Application for the Dental Industry, Physics Proc., 2010, 5, p 543–549.

    Article  Google Scholar 

  37. J.M. Yager, H. Ozcan, H.I. Kilinc, A.H. Elwany and I. Karaman, Mechanical Properties and Microstructure of Removable Partial Denture Clasps Manufactured Using Selective Laser Melting, Addit. Manuf., 2015, 8, p 117–123.

    CAS  Google Scholar 

  38. W.E. Frazier, Metal Additive Manufacturing: a Review, J. Mater. Eng. Perform., 2014, 23, p 1917–1928.

    Article  CAS  Google Scholar 

  39. X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang and T.B. Sercombe, A Selective Laser Melting and Solution Heat Treatment Refined Al-12Si Alloy with a Controllable Ultrafine Eutectic Microstructure And 25% Tensile Ductility, Acta Mater., 2015, 95, p 74–82.

    Article  CAS  Google Scholar 

  40. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Lathan, K. Xia and Q. Ma, Additive Manufacturing of Strong And Ductile Ti–6Al–4V by Selective Laser Melting Via in Situ Martensite Decomposition, Acta Mater., 2015, 85, p 74–84.

    Article  CAS  Google Scholar 

  41. Y.M. Wang, T. Voisin, J.T. Mckeown, J.C. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza and T. Zhu, Additively Manufactured Hierarchical Stainless Steels With High Strength and Ductility, Nat. Mater., 2018, 17, p 63–71.

    Article  CAS  Google Scholar 

  42. A. Takaichi, T. Suyalatu, N. Nakamoto, N. Joko, Y. Nomura, S. Tsutsumi, H. Migita, S. Doi, A.C. Kurosu, N. Wakabayashi, Y. Igarashi and T. Hanawa, Microstructures and Mechanical Properties of Co-29Cr-6Mo Alloy Fabricated by Selective Laser Melting Process for Dental Applications, J. Mech. Behav. Biomed. Mater., 2013, 21, p 67–76.

    Article  CAS  Google Scholar 

  43. K.B. Hazlehurst, C.J. Wang and M. Stanford, An Investigation Into the Flexural Characteristics of Functionally Graded Cobalt Chrome Femoral Stems Manufactured Using Selective Laser Melting, Mater. Des., 2014, 60, p 177–183.

    Article  CAS  Google Scholar 

  44. I. Yadroitsev, P.H. Bertrand and I. Smurov, Parametric Analysis of the Selective Laser Melting Process, Appl. Surf. Sci., 2007, 253, p 8064–8069.

    Article  CAS  Google Scholar 

  45. Y. Ucar, T. Akova, M. Akyel and W.A. Brantley, Internal Fit Evaluation of Crowns Prepared Using a New Dental Crown Fabrication Technique: Laser-Sintered Co-Cr Crowns, J Prosthet Dent., 2009, 102, p 253–259.

    Article  CAS  Google Scholar 

  46. H. Yves-Christian, W. Jan, M. Wilhelmm, K. Wissenbach and R. Poprawe, Net Shaped High Performance Oxide Ceramic Parts by Selective Laser Melting, Phys. Proc., 2010, 5, p 587–594.

    Article  CAS  Google Scholar 

  47. J. Sun and F.Q. Zhang, The Application of Rapid Prototyping in Prosthodontics, J Prosthodont, 2012, 21, p 641–644.

    Article  Google Scholar 

  48. L. Wu, H. Zhu, X. Gai and Y. Wang, Evaluation of the Mechanical Properties and Porcelain Bond Strength of Cobalt-Chromium Dental Alloy Fabricated by Selective Laser Melting, J. Prosthet. Dent., 2014, 111, p 51–55.

    Article  CAS  Google Scholar 

  49. X. Yang, N. Xiang and B. Wei, Effect of Fluoride Content On Ion Release From Cast and Selective Laser Melting-Processed Co-Cr-Mo Alloys, J Prosthet Dent., 2014, 112, p 1212–1216.

    Article  CAS  Google Scholar 

  50. L. Zeng, N. Xiang and B.A. Wei, Comparison of Corrosion Resistance of Cobalt Chromium-Molybdenum Metal Ceramic Alloy Fabricated With Selective Laser Melting And Traditional Processing, J Prosthet Dent., 2014, 112, p 1217–1224.

    Article  CAS  Google Scholar 

  51. X. Li, J. He, W. Zhang, N. Jiang and D. Li, Additive Manufacturing of Biomedical Constructs With Biomimetic Structural Organizations, Materials, 2016, 9, p 909–925.

    Article  Google Scholar 

  52. G. Satoh, Y.L. Yao and C. Qiu, Strength and Microstructure of Laser Fusion-Welded Ti–Ss Dissimilar Material Pair, Int. J. Adv. Manuf. Technol., 2013, 66, p 469–479.

    Article  Google Scholar 

  53. A. Simchi and H. Asgharzadeh, Densification and Microstructural Evaluation During Laser Sintering of M2 High Speed Steel Powder, Mater. Sci. Technol., 2004, 20, p 1462–1468.

    Article  CAS  Google Scholar 

  54. K. Kempen, E. Yasa, L. Thijs, J.P. Kruth and J. Van Humbeeck, Microstructure and Mechanical Properties of Selective Laser Melted 18Ni-300 Steel, Phys. Proc. (Part A), 2011, 12, p 255–263.

    Article  CAS  Google Scholar 

  55. M. Averyanova, E. Cicala, P.H. Bertrand and D. Grevey, Experimental Design Approach to Optimize Selective Laser Melting of Martensitic 17–4 Ph Powder: Part I - Single Laser Tracks and First Layer, Rapid Prototyp J, 2012, 18, p 28–37.

    Article  Google Scholar 

  56. C. Fu and Y. Guo, Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4V, ASME J. Manuf. Sci. Eng., 2014, 136, p 061004.

    Article  Google Scholar 

  57. Y. Huang, M.C. Leu, J. Mazumder and A. Donmez, Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations, ASME J. Manuf. Sci. Eng., 2015, 137, p 014001.

    Article  Google Scholar 

  58. Y. Pupo, K.P. Monroy and J. Ciurana, Influence of Process Parameters on Surface Quality of Cocrmo Produced by Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2015, 80, p 985–995.

    Article  Google Scholar 

  59. M.H. Hong, B.K. Min and T.Y. Kwon, The Influence of Process Parameters on the Surface Roughness of a 3D Printed Co–Cr Dental Alloy Produced Via Selective Laser Melting, Appl. Sci., 2016, 6, p 401–410.

    Article  Google Scholar 

  60. O. Rehme, Cellular Design For Laser Freeform Fabrication, Technische Universitat Hamburg-Harburg, (2008)

  61. I. Yadroitsev, Selective Laser Melting, Lap Lambert Academic Publishing, (2009)

  62. O. Rehme and C. Emmelmann, Reproducibility for properties of selective laser melting products, Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, 2005, pp. 227-232

  63. I. Yadroitsev and I. Smurov, Selective Laser Melting Technology: From the Single Laser Melted Track Stability to 3D Parts of Complex Shape, Phys. Proc. (Part B), 2010, 5, p 551–560.

    Article  Google Scholar 

  64. M. Averyanova, P. Bertrand and B. Verquin, Manufacture of Co-Cr Dental Crowns and Bridges by Selective Laser Melting Technology, Virtual Phys. Prototyp., 2011, 6, p 179–185.

    Article  Google Scholar 

  65. J.P. Kruth, G. Levy, F. Klocke and T.H.C. Childs, Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing, CIRP Ann., 2007, 56, p 730–759.

    Article  Google Scholar 

  66. C. Song, Y. Yang, Y. Wang, D. Wang and J. Yu, Research on Rapid Manufacturing of CoCrMo Alloy Femoral Component Based on Selective Laser Melting, Int J Adv Manuf Technol., 2014, 75, p 445–453.

    Article  Google Scholar 

  67. A.G. Demir, P. Colombo and B. Previtali, From Pulsed to Continuous Wave Emission in SLM with Contemporary Fiber Laser Sources: Effect of Temporal and Spatial Pulse Overlap in Part Quality, Int. J. Adv. Manuf. Technol., 2017, 91, p 2701–2714.

    Article  Google Scholar 

  68. Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai and J. Wei, Hierarchical Microstructure and Strengthening Mechanisms of a CoFrFeNiMn High Entropy Alloy Additively Manufactured by Selective Laser Melting, Scripta Mater., 2018, 154, p 20–24.

    Article  CAS  Google Scholar 

  69. X.J. Wang, L.C. Zhang, M.H. Fang and T.B. Sercombe, The Effect of Atmosphere on the Structure and Properties of a Selective Laser Melted Al–12Si Alloy, Mater. Sci. Eng. A., 2014, 597, p 370–375.

    Article  CAS  Google Scholar 

  70. E. Liverani, A. Fortunato, A. Leardini, C. Belvedere, S. Siegler, L. Ceschini and A. Ascari, Fabrication of Co–Cr–Mo Endoprosthetic Ankle Devices by Means of Selective Laser Melting, Mater. Des., 2016, 106, p 60–68.

    Article  CAS  Google Scholar 

  71. Y. Lu, Y. Gan, J. Lin, S. Guo, S. Wu and J. Lin, Effect of Laser Speeds on the Mechanical Property and Corrosion Resistance of CoCrW Alloy Fabricated by SLM, Rapid Prototyp. J., 2017, 23, p 28–33.

    Article  Google Scholar 

  72. Y. Lu, L. Ren, S. Wu, C. Yang, W. Lin, S. Xiao, Y. Yang, K. Yang and J. Lina, CoCrWCu Alloy with Antibacterial Activity Fabricated by Selective Laser Melting: Densification, Mech. Prop. Microstr. Anal. Powder Technol., 2018, 325, p 289–300.

    Article  CAS  Google Scholar 

  73. Y. Lu, L. Ren, X. Xu, Y. Yang, S. Wu, J. Luo, M. Yang, L. Liu, D. Zhuang, K. Yang and J. Lin, Effect of Cu on Microstructure, Mechanical Properties, Corrosion Resistance and Cytotoxicity of CoCrW Alloy Fabricated by Selective Laser Melting, J. Mech. Behav. Biomed. Mater., 2018, 81, p 130–141.

    Article  CAS  Google Scholar 

  74. B. Zhang, H. Liao and C. Coddet, Effects of Processing Parameters on Properties of Selective Laser Melting Mg–9% Al Powder Mixture, Mater. Des., 2012, 34, p 753–758.

    Article  CAS  Google Scholar 

  75. A. Simchi, Direct Laser Sintering of Metal Powders: Mechanism, Kinetics and Microstructural Features, Mater. Sci. Eng. A, 2006, 428, p 148–158.

    Article  Google Scholar 

  76. C. Teng, H. Gong, A. Szabo, J.J.S. Dilip, K. Ashby, S. Zhang, N. Patil, D. Pal and B. Stucker, Simulating Melt Pool Shape and Lack of Fusion Porosity for Selective Laser Melting of Cobalt Chromium Components, J. Manuf. Sci. Eng., 2017, 139, p 011009.

    Article  Google Scholar 

  77. F.B. Pickering, Physical Metallurgy and the Design of Steels, Applied Science, London, (1978)

    Google Scholar 

  78. L.M. Brown and R.K. Ham, Strengthening Methods in Crystals, Applied Science, London, 1971, p 9

    Google Scholar 

  79. M.G. Fontana and N.D. Greene, Corrosion Engineering, McGraw-Hill, New York, (1978)

    Google Scholar 

  80. J. Augustyn-Pieniazek, A. Lukaszczyk and R. Zapala, Microstructure and Corrosion Resistance Characteristics of Cr-Co-Mo Alloys Designed for Prosthetic Materials, Arch. Metall. Mater., 2013, 58, p 1281–1285.

    Article  CAS  Google Scholar 

  81. C. Song, M. Zhang, Y. Yang, D. Wang and Yu. Jia-Kuo, Morphology and Properties of Cocrmo Parts Fabricated by Selective Laser Melting, Mater. Sci. Eng., A, 2018, 713, p 206–213.

    Article  CAS  Google Scholar 

  82. V. Lastnosti, O.K. Zlitine and P. Prahov, Influence of Alloying Elements on the Mechanical Properties of a Cobalt-Based Alloy Produced with Powder Metallurgy, Mater. Tehnol., 2017, 51, p 443–447.

    Article  Google Scholar 

  83. E.O. Olakanmi, Selective Laser Sintering/Melting (SLS/SLM) of Pure Al, Al–Mg, And Al–Si Powders: Effect of Processing Conditions and Powder Properties, J. Mater. Process. Technol., 2013, 2013, p 1387–1405.

    Article  Google Scholar 

  84. S.H. Lee, E. Takahashi, N. Nomura and A. Chiba, Effect of Heat Treatment on Microstructure and Mechanical Properties of Ni-And C-Free Co-Cr-Mo Alloys for Medical Applications, Mater. Trans., 2005, 46, p 1790–1793.

    Article  CAS  Google Scholar 

  85. J. P. Kruth, B. Vandenbroucke, J. V. Vaerenbergh and I. Naert, Rapid Manufacturing Of Dental Prostheses by Means Of Selective Laser Sintering/Melting, Proceedings of the AFPR, S4, (2005)

  86. J. Qiu, W.Q. Yu, F.Q. Zhang, R.J. Smales, Y.L. Zhang and C.H. Lu, Corrosion Behavior and Surface Analysis of a Co–Cr And Two Ni–Cr Dental Alloys Before and After Simulated Porcelain Firing, Eur. J. Oral Sci., 2011, 119, p 93–101.

    Article  CAS  Google Scholar 

  87. X.Z. Xin, N. Xiang, J. Chen and B. Wei, In Vitro Biocompatibility of Co–Cr Alloy Fabricated by Selective Laser Melting or Traditional Casting Techniques, Mater. Lett., 2012, 88, p 101–103.

    Article  CAS  Google Scholar 

  88. B. Zhang, Q. Huang, Y. Gao, P. Luo and C. Zhao, Preliminary Study on Some Properties of Co-Cr Dental Alloy Formed by Selective Laser Melting Technique, J. Wuhan Univ. Technol. Mater Sci. Ed., 2012, 27, p 665–668.

    Article  CAS  Google Scholar 

  89. B. Qian, K. Saeidi, L. Kvetkova, F. Lofaj, C. Xiao and Z. Shen, Defects-Tolerant Co-Cr-Mo Dental Alloys Prepared by Selective Laser Melting, Dent. Mater., 2015, 31, p 1435–1444.

    Article  CAS  Google Scholar 

  90. K. Darvish, Z.W. Chen, M.A.L. Phan and T. Pasang, Selective Laser Melting of Co-29Cr-6Mo Alloy With Laser Power 180–360 W: Cellular Growth, Intercellular Spacing and the Related Thermal Condition, Mater. Charact., 2018, 135, p 183–191.

    Article  CAS  Google Scholar 

  91. S.L. Sing, S. Huang and W.Y. Yeong, Effect of Solution Heat Treatment on Microstructure and Mechanical Properties of Laser Powder Bed Fusion Produced Cobalt-28chromium-6molybdenum, Mater. Sci. Eng. A, 2020, 769, p 138511.

    Article  CAS  Google Scholar 

  92. S. Lee, E. Takahashi, N. Nomura and A. Chiba, Effect of Carbon Addition on Microstructure and Mechanical Properties of a Wrought Co–Cr–Mo Implant Alloy, Mater. Trans., 2006, 47, p 287–290.

    Article  CAS  Google Scholar 

  93. J. Qiu, W.Q. Yu and F.Q. Zhang, Effects of the Porcelain-Fused-to-Metal Firing Process on the Surface and Corrosion of Two Co–Cr Dental Alloys, J Mater Sci., 2011, 46, p 1359–1368.

    Article  CAS  Google Scholar 

  94. Y. Lu, S. Wu, Y. Gan, J. Li, C. Zhao, D. Zhuo and J. Lin, Investigation on the Microstructure Mechanical Property and Corrosion Behavior of the Selective Laser Melted Cocrw Alloy for Dental Application, Mater. Sci. Eng. C, 2015, 49, p 517–525.

    Article  CAS  Google Scholar 

  95. M. Zhang, Y. Yang, C. Song, Y. Bai and Z. Xiao, An Investigation Into the Aging Behavior of CoCrMo Alloys Fabricated by Selective Laser Melting, J. Alloys Comp., 2018, 750, p 878–886.

    Article  CAS  Google Scholar 

  96. Y. Kajima, A. Takaichi, N. Kittikundecha, T. Nakamoto, T. Kimura, N. Nomura, A. Kawasaki, T. Hanawa, H. Takahashi and N. Wakabayashi, Effect of Heat-Treatment Temperature on Microstructures and Mechanical Properties of Co-Cr-Mo Alloys Fabricated by Selective Laser Melting, Mater. Sci. Eng. A, 2018, 726, p 21–31.

    Article  CAS  Google Scholar 

  97. Y. Kajima, A. Takaichi, T. Nakamoto, T. Kimura, Y. Yogo, M. Ashida, H. Doi, N. Nomura, H. Takahashi, T. Hanawa and N. Wakabayashi, Fatigue Strength of Co–Cr–Mo Alloy Clasps Prepared by Selective Laser Melting, J. Mech. Behav. Biomed. Mater., 2016, 59, p 446–458.

    Article  CAS  Google Scholar 

  98. J. R. Davis, ASM Special Handbook: Nickel, Cobalt, and Their Allys, (2000)

  99. A. Simchi and H. Pohl, Effects of Laser Sintering Processing Parameters on the Microstructure and Densification of Iron Powder, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process, 2003, 359, p 119–128.

    Article  Google Scholar 

  100. Y. Lu, S. Wu, Y. Gan, S. Zhang, S. Guo and J. Lin, Microstructure, Mechanical Property and Metal Release of As-SLM CoCrW Alloy Under Different Solution Treatment Conditions, J. Mech. Behav. Biomed. Mater, 2016, 55, p 179–190.

    Article  CAS  Google Scholar 

  101. P. Edwards and M. Ramulu, Fatigue Performance Evaluation of Selective Laser Melted Ti–6Al–4V, Mat. Sci. Eng., 2014, 598, p 327–337.

    Article  CAS  Google Scholar 

  102. A. Riemer, S. Leuders, M. Thone, H.A. Richard, T. Troster and T. Niendorf, On the Fatigue Crack Growth Behavior in 316l Stainless Steel Manufactured by Selective Laser Melting, Eng. Fract. Mech., 2014, 120, p 15–25.

    Article  Google Scholar 

  103. ASTM F75-18, Standard Specification for Cobalt-28 Chromium-6 Molybdenum Alloy Castings and Casting Alloy for Surgical Implants (UNS R30075), ASTM International, West Conshohocken, PA, 2018, www.astm.org

  104. K. Monroy, J. Delgado, L. Sereno, J. Ciurana and N.J. Hendrichs, Geometrical Feature Analysis of Co-Cr-Mo Single Tracks After Selective Laser Melting Processing, Rapid Prototyping Journal, 2015, 21, p 287–300.

    Article  Google Scholar 

  105. L. Ren, K. Memarzadeh, S. Zhang, Z. Sun, C. Yang, G. Ren, R.P. Allaker and K. Yang, A Novel Coping Metal Material CoCrCu Alloy Fabricated by Selective Laser Melting with Antimicrobial and Antibiofilm Properties, Mater. Sci. Eng., C, 2016, 67, p 461–467.

    Article  CAS  Google Scholar 

  106. ISO, Dentistry - Metallic Materials for Fixed and Removable Restorations and Appliances, ISO22674:2006(E), Geneva, 2006, pp. 4–5

  107. W.M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland and V. Hansen, Microstructure and Hardness Studies of Inconel 718 Manufactured by Selective Laser Melting Before and After Solution Heat Treatment, Mater. Sci. Eng. A., 2017, 689, p 220–232.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Saini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, J.S., Dowling, L., Trimble, D. et al. Mechanical Properties of Selective Laser Melted CoCr Alloys: A Review. J. of Materi Eng and Perform 30, 8700–8714 (2021). https://doi.org/10.1007/s11665-021-06283-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06283-1

Keywords

Navigation