Skip to main content
Log in

Analysis of Multi-zone Fatigue Crack Growth Behavior of Friction Stir Welded 5083 Aluminum Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Bobbin tool friction stir welding is an expanded technology of friction stir welding, which has broad application prospects. In this study, an analysis of the microstructure and hardness, tensile performance, and crack growth behavior of a 12-mm-thick 5083 aluminum-alloy bobbin tool friction stir welding joint were carried out for different zones. The results show that the tensile strength of NZ can reach 95% of BM, while the tensile strength of HAZ is only 73% of BM; the elongation of NZ is 97% of BM, and the elongation of HAZ is only 47% of BM. The mechanical properties of 5083 aluminum alloy decreased after welding. For a specimen with a pre-crack vertical to the weld, when the crack propagates from the base material into the weld, the growth rate is significantly accelerated due to poor weld performance. The specimen with a pre-crack near the heat-affected zone has the fastest crack growth rate, and for the specimen with a pre-crack inside the weld nugget, the growth rate is between the other two specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Z.Y. Qi, R.Z. Wu, G.J. Wang, Q. Wang, L.G. Hou. Application of Aluminum Alloy in Shipbuilding and Ocean Engineering[J]. Light Alloy Process. Technol. 2016(01)

  2. A. Magee, L. Ladani, T.D. Topping and E.J. Lavernia, Effects of Tensile Test Parameters on the Mechanical Properties of a Bimodal Al–Mg Alloy[J], Acta Mater., 2012, 60(16), p 5838–5849.

    Article  CAS  Google Scholar 

  3. Y.S. Ding, X.L. Wu, K.Y. Gao, C. Huang, X.Y. Xiong, H. Huang, S.P. Wen and Z.R. Nie, The Influence of Stabilization Treatment on Long-Term Corrosion Resistance and Microstructure in Er and Zr Containing 5083 Aluminum Alloy[J], Mater. Charact., 2020, 161, p 110143.

    Article  CAS  Google Scholar 

  4. M.M. Sharma, J.D. Tomedi and T.J. Weigley, Slow Strain Rate Testing and Stress Corrosion Cracking of Ultra-Fine Grained and Conventional Al–Mg Alloy[J], Mater. Sci. Eng. A, 2014, 619, p 35–46.

    Article  CAS  Google Scholar 

  5. F.A. Guo, N. Trannoy and J. Lu, Characterization of the Thermal Properties by Scanning thermal Microscopy in Ultrafine-Grained Iron Surface Layer Produced by Ultrasonic Shot Peening[J], Mater. Chem. Phys., 2006, 96(1), p 59–65.

    Article  CAS  Google Scholar 

  6. Z.Y. Ma, Research Progress of Friction Stir Welding and Processing Technology [J], Sci. Obs., 2009, 4(05), p 53–54.

    Google Scholar 

  7. C. Gürel and M. Selcuk, Recent Developments in Friction Stir Welding of Al-alloys[J], J. Mater. Eng. Perform., 2014, 23(6), p 1936–1953.

    Article  Google Scholar 

  8. Y.H. Zhao, Y.M. Li, Y.F. Hao, Y.G. Chen and G.Q. Wang, Analysis of Microstructure and Properties of 2219 Aluminum Alloy Double-Shaft Friction Stir Welded Joints[J], Aerosp. Mater. Technol., 2012, 42(6), p 70–75.

    CAS  Google Scholar 

  9. P.L. Threadgill, M.M.Z. Ahmed, J.P. Martin, J.G. Perrett, B.P. Wynne. The Use of Bobbin Tools for Friction Stir Welding of Aluminium Alloys[J]. Mater. Sci. Forum, 2010, 884.

  10. M.K. Sued, D. Pons, J. Lavroff and E.H. Wong, Design Features for Bobbin Friction Stir Welding Tools: Development of a Conceptual Model Linking the Underlying Physics to the Production Process[J], Mater. Des., 2014, 54, p 632–643.

    Article  CAS  Google Scholar 

  11. Q. Wen, W.Y. Li, F.F. Wang and X.W. Yang, Research Progress of Double-Shaft Shoulder Friction Stir Welding Methods[J], Aviation Manuf. Technol., 2017, 12, p 16–23.

    Google Scholar 

  12. J. Liu, J.H. Yang, F.W. Han and W.B. Gong, Microstructure and Properties of Thick Plate Aluminum Alloy Friction Stir Welding Keyhole Repair Welding joint[J], Mater. Eng., 2012, 7, p 29–33.

    Google Scholar 

  13. H.J. Liu, J.C. Hou and H. Guo, Effect of Welding Speed on Micro-structure and Mechanical Properties of Self-Reacting Friction Stir Welding 6061–T6 Aluminum Alloy[J], Mater. Des., 2013, 50, p 872–878.

    Article  CAS  Google Scholar 

  14. T. Sarikka, M. Ahonen, R. Mouginot, P. Nevasmaa, P.K. Roikonen, U. Ehrnstén and H. Hänninen, Microstructural, Mechanical, and Fracture Mechanical Characterization of SA 508-Alloy 182 Dissimilar Metal Weld in View of Mismatch State[J], Int. J. Press. Vessels Pip., 2016, 145, p 13–22.

    Article  CAS  Google Scholar 

  15. W. Wang, K. Qiao, J.L. Wu, T.Q. Li, J. Cai and K.S. Wang, Fatigue Properties of Friction Stir Welded Joint of Ultrafine-Grained 2024 Aluminium Alloy[J], Sci. Technol. Weld. Join., 2017, 22(2), p 110–119.

    Article  CAS  Google Scholar 

  16. M. Rakin, B. Medjo, N. Gubeljak and A. Sedmak, Micromechanical Assessment of Mismatch Effects on Fracture of High-Strength Low Alloyed Steel Welded Joints[J], Eng. Fract. Mech., 2013, 109, p 221–235.

    Article  Google Scholar 

  17. M. Muzvidziwa, M. Okazaki, K. Suzuki and S. Hirano, Role of Microstructure on the Fatigue Crack Propagation Behavior of a Friction Stir Welded Ti-6Al–4V[J], Mater. Sci. Eng. A, 2016, 652, p 59–68.

    Article  CAS  Google Scholar 

  18. D. Ghahremani Moghadam and K. Farhangdoost, Influence of Welding Parameters on Fracture Toughness and Fatigue Crack Growth Rate in Friction Stir Welded Nugget of 2024–T351 Aluminum Alloy Joints[J], Trans. Nonferrous Metals Soc. China, 2016, 26(10), p 2567–2585.

    Article  CAS  Google Scholar 

  19. S.R. Sharma and R.S. Mishra, Fatigue Crack Growth Behavior of Friction Stir Processed Aluminum Alloy [J], Scripta Mater., 2008, 59(4), p 395–398.

    Article  CAS  Google Scholar 

  20. P. Moreira, A. Jesus, A. Ribeiro and P. Castro, Fatigue Crack Growth in Friction Stir Welds of 6082–T6 and 6061–T6 Aluminium Alloys: A Comparison[J], Theoret. Appl. Fract. Mech., 2008, 50(2), p 81–91.

    Article  CAS  Google Scholar 

  21. X.J. Wang, S.W. Li, Y. Niu, J. Zhang. Experimental Analysis of Fatigue Crack Growth Rate of A7075 Friction Stir Welding[J]. Trans. China Weld. Inst., 2008(09): 5-7+113.

  22. L. Zhang, H.L. Zhong, S.C. Li, H.J. Zhao, J.Q. Zhao and L. Qi, Microstructure Mechanical Properties and Fatigue Crack Growth Behavior of Friction Stir Welded Joint of 6061–T6 Aluminum Alloy[J], Int. J. Fatigue, 2020, 135, p 105556.

    Article  CAS  Google Scholar 

  23. Y.H. Jin, L. Zhang, L.L. Zhang, X.J. Wang. Micro-area low-cycle fatigue crack growth behavior of 7050 aluminum alloy FSW joint[J]. Trans. China Weld. Inst., 2020, 41(10): 11-16+97-98.

  24. X.M. Zhang, G.Z. He and F.W. Han, Research on the Application of Friction Stir Welding Technology in the Manufacture of Aluminum Alloy Car Bodies for Railway Passenger Cars[J], Metalwork. (Cold Work.), 2016, S1, p 561–563.

    Google Scholar 

  25. K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Aluminum Alloys[J], Scripta Mater., 2000, 43(8), p 743–749.

    Article  CAS  Google Scholar 

  26. Z.Y. Ma, R.S. Mishra and M.W. Mahoney, Superplastic Deformation Behaviour of Friction Stir Processed 7075Al Alloy[J], Acta Mater., 2002, 50(17), p 4419–4430.

    Article  CAS  Google Scholar 

  27. P. Dong, Research on the Structure and Properties of 6005A–T6 Aluminum Alloy Friction Stir Welding Joint[D], Jilin University, China, 2014.

    Google Scholar 

  28. R. Karimbeav, Y.S. Pyun, E. Maleki, O. Unal and A. Amanov, An Improvement in Fatigue Behavior of AISI 4340 Steel by Shot Peening and Ultrasonic Nanocrystal Surface Modification[J], Mater. Sci. Eng. A, 2020, 791, p 139752.

    Article  Google Scholar 

  29. R.A. Donald and P.P. Pradeep, Essentials of Materials Science and Engineering[M], Defence Industry Press, Beijing, 2004, p 151

    Google Scholar 

  30. J.Z. Zhou, Y.J. Sun, S. Huang, J. Sheng, J. Li and E. Agyenim-Boateng, Effect of Laser Peening on Friction and Wear Behavior of Medical Ti6Al4V alloy[J], Opt. Laser Technol., 2019, 109, p 263–269.

    Article  CAS  Google Scholar 

  31. A. Rotella, Y. Nadot, S. Richard, S. L’Heritier and A. Roy, Fatigue Life of Cast Al Component[J], Procedia Eng, 2015, 133, p 211–222.

    Article  CAS  Google Scholar 

  32. G.P. Guo and C.F. Ding, Mechanical Testing of Aeronautical Materials[M], China Machine Press, Beijing, 2017, p 236

    Google Scholar 

  33. H.J. Liu, J.J. Sun, T. Jiang, S.W. Guo, Y.N. Liu and X. Lin, Research on Rolling Contact Fatigue of an Ultra-High Carbon Steel[J], Acta Metall Sinica, 2014, 50(12), p 1446–1452.

    CAS  Google Scholar 

  34. M. Achintha, D. Nowell, D. Fufari, E.E. Sackett and M.R. Bache, Fatigue Behaviour of Geometric Features Subjected to Laser Shock Peening: Experiments and Modelling[J], Int. J. Fatigue, 2014, 62, p 171–179.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [51775355].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Wang, L., Hui, L. et al. Analysis of Multi-zone Fatigue Crack Growth Behavior of Friction Stir Welded 5083 Aluminum Alloy. J. of Materi Eng and Perform 31, 53–63 (2022). https://doi.org/10.1007/s11665-021-06191-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06191-4

Keywords

Navigation