Skip to main content
Log in

Effect of Auxiliary Enhanced Magnetic Field on Microstructure and Mechanical Behaviors of Multilayered CrN/AlCrN Films

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

CrN/AlCrN nano-multilayer films can combine the advantages of CrN and AlCrN films through film structure modulation using multi-arc ion plating technique. Auxiliary enhanced magnetic field may improve arc spots velocity and be beneficial to flexible structure modulation in this paper. An inductance coil was installed behind the CrAl target to further enhance the magnetic field. Then, CrN/AlCrN nanoscale multilayers were deposited on the single crystal silicon, M2 high-speed steel and the 304 stainless steel samples by the magnetic field enhanced multi-arc ion plating technique. The morphology and crystal structure of the film after deposition were analyzed, and the effects of magnetic induction intensity under different coil current on the bond strength, wear resistance, hardness and corrosion resistance of the film were studied. The results show that the number of large particles on the surface of the film is significantly reduced compared with that without magnetic field enhancement. The crystal structure of the thin film is a rocksalt-type cube with (111) and (311) preferred orientations. At the same time, increasing the coil current can improve the film compactness. With the increase of coil current from 0.3A to 1.2A, the microhardness and corrosion resistance of the film are improved due to the compact structure. However, the bond strength increases first and then decreases due to the increase of the stress caused by excessive ion impact. The friction coefficient and wear width of the film are the minimum when the coil current is 0.6A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Reference

  1. M. Sokovic, Quality Management in Development of Hard Coatings on Cutting Tools, J. Achiev. Mater. Manuf. Eng., 2007, 24(1), p 421–429.

    Google Scholar 

  2. A.S. Korhonen and E. Harju, Surface Engineering with Light Alloys—Hard Coatings, Thin Films, and Plasma Nitriding[J], J. Mater. Eng. Perform., 2000, 9(3), p 302.

    Article  CAS  Google Scholar 

  3. L. Jing, L. Lehao, Z. Xing, S. Yudong, Z. Tingkai and L. Tiehu, Facile Fabrication of Multifunctional Aramid Nanofiber Films by Spin Coating[J], J. Mater. Eng. Perform., 2016, 25(11), p 4757.

    Article  CAS  Google Scholar 

  4. R.B. Umesh, S. Swain, N. Rameshbabu and B.P. Swain, Biocompatibility of Hydrogen-Diluted Amorphous Silicon Carbide Thin Films for Artificial Heart Valve Coating[J], J. Mater. Eng. Perform., 2018, 27(6), p 2679.

    Article  Google Scholar 

  5. J. Carlos Santos Silva Júnior, A. Rocha Pimenta, R. Pereira, D. de Freitas, C. Baptistado Lago and L. Ferreira de Senna, AMT/APS Multilayered Films as Adherence Promoters for Epoxy Coatings on Carbon Steel—Part I: Influence of Curing Conditions on Anticorrosive Properties of AMT/APS Films in Saline Medium[J], J. Mater. Eng. Perform., 2021, 30, p 2482.

    Article  Google Scholar 

  6. S. Veprek and A.S. Argon, Limits to the Strength of Super- and Ultrahard Nanocomposite Coatings, J. Vacuum Sci. Technol., 2003, 21(3), p 532–544.

    Article  CAS  Google Scholar 

  7. D. Zhu, X. Zhang and H. Ding, Tool Wear Characteristics in Machining of Nickel-Based Superalloys, Int. J. Mach. Tools Manuf, 2013, 64, p 60–77.

    Article  Google Scholar 

  8. M. Fenker, M. Balzer and H. Kappl, Corrosion protection with hard coatings on steel: Past approaches and current research efforts, Surf. Coat. Technol., 2014, 257, p 182–205.

    Article  CAS  Google Scholar 

  9. M. Dinu, E. Mouele, A. Parau, A. Vladescu, L. Petrik and M. Braic, Enhancement of the Corrosion Resistance of 304 Stainless Steel by Cr–N and Cr(N, O) Coatings, Coatings, 2018, 8, p 132.

    Article  Google Scholar 

  10. D. Gutsev, M. Antonov, I. Hussainova and A.Y. Grigoriev, Effect of SiO2 and PTFE Additives on Dry Sliding of NiP Electroless Coating, Tribol. Int., 2013, 65, p 295–302.

    Article  CAS  Google Scholar 

  11. L. Zhang, Y. Chen, Y. Feng, S. Chen, Q. Wan and J. Zhu, Electrochemical CHARACTERIZATION of AlTiN, AlCrN and AlCrSiWN Coatings, Int. J. Refract. Met. Hard Mater., 2015, 53, p 68–73.

    Article  CAS  Google Scholar 

  12. J. Baronins, V. Podgursky, M. Antonov, S. Bereznev and I. Hussainova, Electrochemical Behaviour of TiCN and TiAlN Gradient Coatings Prepared by Lateral Rotating Cathode Arc PVD Technology, Key Eng. Mater., 2016, 721, p 414–418.

    Article  Google Scholar 

  13. R. Kaindl, R. Franz, J. Soldan, A. Reiter, P. Polcik, C. Mitterer, B. Sartory, R. Tessadri and M. O’Sullivan, Structural Investigations of Aluminum-Chromium-Nitride Hard Coatings by Raman Micro-Spectroscopy, Thin Solid Films, 2006, 515, p 2197–2202.

    Article  CAS  Google Scholar 

  14. T. Sampath Kumar and A. Vinoth Jebaraj, Metallurgical characterization of CrN and AlCrN physical vapour deposition coatings on aluminium alloy AA 6061[J], Mater. Today: Proc., 2020, 22, p 1479.

    CAS  Google Scholar 

  15. Materials Research; Investigators at Bu Ali Sina University Report Findings in Materials Research (Comparison of the wear and corrosion behavior between CrN and AlCrN coatings deposited by Arc-PVD method)[J]. Journal of Technology,2020.

  16. A. Yusuf Adesina, Z.M. Gasem and A. Samad Mohammed, Comparative Investigation and Characterization of the Scratch and Wear Resistance Behavior of TiN, CrN, AlTiN and AlCrN Cathodic Arc PVD Coatings[J], Arab. J. Sci. Eng., 2019, 44(12), p 10355.

    Article  Google Scholar 

  17. P Lokeswar, R Maity Saikat, K Sunil. DLC/CrN or AlCrN/CrN composite films: The better candidate in terms of anti-Wear performance and lesser ion release in hip implant[J]. Materials Today: Proceedings,2021(prepublish).

  18. A. Asad, Y. Maxim, B. Andrei, V. Mart, T. Rainer, S. Jozef, L. Andreas and S. Fjodor, P Vitali (2020) High-Temperature Tribological Performance of Hard Multilayer TiN-AlTiN/nACo-CrN/AlCrN-AlCrO-AlTiCrN Coating Deposited on WC-Co Substrate[J], Coatings, 2020, 10(9), p 909.

    Article  Google Scholar 

  19. B. Xiao, J. liu, F. Liu, X. Zhong, X. Xiao, T. Fei Zhang and Q. Wang, Effects of Microstructure Evolution on the Oxidation Behavior and High-Temperature Tribological Properties of AlCrN/TiAlSiN Multilayer Coatings[J], Ceram. Int., 2018, 44, p 23150.

    Article  CAS  Google Scholar 

  20. Thin Solid Films; Researchers from Ruhr University Describe Findings in Thin Solid Films (CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering)[J]. Journal of Engineering,2015.

  21. C. Yin-Yu, W. Shi-Yao, C. Chun-Hsiao and F. Fu-Xing, High Temperature Oxidation and Cutting Performance of AlCrN, TiVN and Multilayered AlCrN/TiVN Hard Coatings[J], Surf. Coat. Technol., 2017, 332, p 494.

    Article  Google Scholar 

  22. C. Wanglin, Y. An, W. Chengyong, D. Yang, D.C. Chen, X. Hui, Z. Daoda and M. Xianna, Microstructures and Mechanical Properties of AlCrN/TiSiN Nanomultilayer Coatings Consisting of fcc Single-Phase SOLID solution[J], Appl Surf Sci, 2020, 509, p 145303.

    Article  Google Scholar 

  23. Z. Sheng-Sheng, Z. Yan-Hui, C. Lv-Sha, V.D. Vladimir, N.K. Nikolay, Y. Bao-Hai and M. Hai-Juan, Effects of Substrate Pulse Bias Duty Cycle on the Microstructure and Mechanical Properties of Ti-Cu-N Films Deposited by Magnetic Field-Enhanced Arc Ion Plating[J], Acta Metallurgica Sinica (English Letters), 2017, 30(02), p 176–184.

    Article  Google Scholar 

  24. Yanhui ZHAO, et al."CrN Films Deposited by Magnetic Field-enhanced Arc Ion Plating".Proceedings of 2016 International Symposium on Advances in Materials Science (IAMS 2016).Ed. , 2016, 1151-1157.

  25. L. Wen Chang, Coupled Magnetic Field Enhanced Arc Ion Plating: Process, Plasma and Deposited Film[J], Adv. Mater. Res., 2012, 35, p 1537.

    Google Scholar 

  26. G. Tao, Q. Lijie, P. Xiaolu and A.V. Alex, Brittle Film-Induced Cracking of Ductile Substrates[J], Acta Materialia, 2015, 99, p 273.

    Article  Google Scholar 

  27. G. Tao, P. Xiaolu, H. Jianying and Q. Lijie, Discontinuous Cracking of TiN Films on a Steel Substrate Induced by an Adhesive Interlayer[J], Philos. Mag. Lett., 2019, 99(6), p 199.

    Article  Google Scholar 

  28. X. Liu, C.E. Athanasiou, N.P. Padture, B.W. Sheldon and H. Gao, A Machine Learning Approach to Fracture Mechanics Problems[J], Acta Materialia, 2020, 190, p 105–112.

    Article  CAS  Google Scholar 

  29. J. Lin, W.D. Sproul, J.J. Moore et al., High rate Deposition of Thick CrN and Cr2N Coatings Using Modulated Pulse Power (MPP) magnetron sputtering[J], Surf. Coat. Technol., 2011, 205(10), p 3226–3234.

    Article  CAS  Google Scholar 

  30. Y. Chen, T. Guo, J. Wang, X. Pang and L. Qiao, Effects of Orientation on Microstructure and Mechanical Properties of TiN/AlN Superlattice Films[J], Scripta Materialia, 2021, 201, p 113951.

    Article  CAS  Google Scholar 

  31. J.K. Youn, J.B. Tae and G.H. Jeon, Bilayer period Dependence of CrN/CrAlN Nanoscale Multilayer Thin Films[J], Superlatt Microstruct, 2008, 45(2), p 73.

    Google Scholar 

  32. J.K. Youn, J.B. Tae, Y.L. Ho and G.H. Jeon, Effect of Bilayer Period on CrN/Cu Nanoscale Multilayer Thin Films[J], Surf. Coat. Technol., 2008, 202, p 22–23.

    Google Scholar 

  33. Y J Kim,T J Byun,J G Han (2010) Mechanical properties and wear behaviours of CrN/TaN nanoscale multilayered thin films[J]. Proc Instit Mech Eng, Part J: J of Eng Tribol 224(2): 189

  34. E. Le Bourhis, P. Goudeau, M.H. Staia, E. Carrasquero and E.S. Puchi-Cabrera, Mechanical Properties of Hard AlCrN-Based Coated Substrates[J], Surf. Coat. Technol., 2009, 203(19), p 2961.

    Article  Google Scholar 

  35. T. Sampath Kumar, S. Balasivanandha Prabu and G. Manivasagam, Metallurgical Characteristics of TiAlN/AlCrN Coating Synthesized by the PVD Process on a Cutting Insert[J], J. Mater. Eng. Perform., 2014, 23(8), p 2877.

    Article  CAS  Google Scholar 

  36. B. Min Sook, Y. Dong Joo, H. Ki Bok and K. Byung Il, Analysis of Properties Multi-Layered TiN/CrN Thin Films Deposited by AIP Method[J], Kor. J. Mater. Res., 2018, 28(7), p 405.

    Article  Google Scholar 

  37. M.A. Ezazi, M.M. Quazi, E. Zalnezhad and A.A.D. Sarhan, Enhancing the Tribo-Mechanical Properties of Aerospace AL7075-T6 by Magnetron-SPUTTERED Ti/TiN, Cr/CrN & TiCr/TiCrN Thin Film Ceramic Coatings[J], Ceram. Int., 2014, 40(10), p 15603.

    Article  CAS  Google Scholar 

  38. S. Pei-Ling, S. Cherng-Yuh, L. Tai-Pin, H. Cheng-Hsun and L. Chung-Kwei, Mechanical Behavior of TiN/CrN Nano-Multilayer Thin Film Deposited by Unbalanced Magnetron Sputter Process[J], J. Alloys Comp., 2010, 509(6), p 3197.

    Google Scholar 

  39. K. Sun Kyu and L. Van Vinh, Deposition of Nanolayered CrN/AlBN Thin Films by Cathodic Arc Deposition: Influence of Cathode Arc Current and Bias Voltage on the Mechanical Properties[J], Surf. Coat. Technol., 2009, 204(24), p 3941.

    Google Scholar 

  40. N. Vashishtha and S.G. Sapate, Abrasive Wear Maps for High Velocity Oxy Fuel (HVOF) Sprayed WC-12Co and Cr3C2–25NiCr Coatings, Tribol Int., 2017, 114, p 290–305.

    Article  CAS  Google Scholar 

  41. M. Faizan Khan, A.Y. Adesina and Z.M. Gasem, Electrochemical and Electrical Resistance Behavior of Cathodic arc PVD TiN, CrN, AlCrN, and AlTiN Coatings in Simulated Proton Exchange Membrane Fuel Cell Environment[J], Mater. Corr., 2019, 70(2), p 281.

    Google Scholar 

  42. S. Rudenja, J. Pan, I.O. Wallinder et al., Passivation and Anodic Oxidation of Duplex TiN Coating on Stainless Steel[J], J. Electrochem. Soc., 1999, 146(11), p 4082–4086.

    Article  CAS  Google Scholar 

  43. J.C. Lui, A. Leyland, S. Lyon et al., Corrosion Resistance of Multi-Layered Plasma-Assisted Physical Vapor DEPOSITION TiN and CrN Coatings[J], Surf. Coat. Technol., 2001, 141(2–3), p 164–173.

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support of this research from Natural Science Foundation of China (12075071, 11875119) and Natural Science Foundation of Heilongjiang Province (LH2019A014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunzhi Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, P., Gong, C., Li, Y. et al. Effect of Auxiliary Enhanced Magnetic Field on Microstructure and Mechanical Behaviors of Multilayered CrN/AlCrN Films. J. of Materi Eng and Perform 31, 230–239 (2022). https://doi.org/10.1007/s11665-021-06175-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06175-4

Keywords

Navigation