Skip to main content
Log in

Effect of Scan Speed and Laser Power on the Nature of Defects, Microstructures and Microhardness of 3D-Printed Inconel 718 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Inconel 718 samples were printed with varying scan speed and laser power with volume energy density (VED) in the range of 52 J/mm3 to 75 J/mm3. Samples were then subjected to solution treatment and aging as per standards. Further, samples were characterized for their microstructure and metallurgical defects using optical microscopy (OM) and scanning electron microscopy. OM revealed that columnar grains had grown epitaxially in the build direction and grain size varies from bottom to top. Microscopic analysis on the XY plane (laser focusing plane) and the XZ plane (the plane in build direction) had revealed the presence of defects like metallurgical pores, interlayer cracks, open pores, lack of fusion, balling defects and their different morphologies. The process parameters such as scan speed, laser power and VED have influenced the porosity % and pore density and their distribution in the printed material. The microstructures also revealed the presence of oxides of Cr, Nb, Ti, Al and Fe which were identified near the interlayer cracks, large open pores and clusters of pores. Microhardness measurements of the printed samples were higher than the wrought Inconel 718 by 15-18%, both in the solution treated and aged conditions. The microhardness survey along the XY and XZ planes yielded different values even after double aging heat treatment. Average microhardness on the XZ plane was 15-20% more than that on the XY plane in each sample pertaining to the difference in grain morphology on the two planes. This difference in the microhardness values was less for the sample of high VED. The results suggest that VED in the range of 65 J/mm3 to 70 J/mm3 with scan speed and laser power between 860 mm/s to 970 mm/s and 260 W to 300 W, respectively, result in samples with tolerable microscopic defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7:
Fig. 8:
Fig. 9.
Fig. 10:
Fig. 11:

Similar content being viewed by others

References

  1. R.J. Hebert, Viewpoint: Metallurgical Aspects of Powder Bed Metal Additive Manufacturing, J. Mater. Sci., 2016, 51(3), p 1165–1175. https://doi.org/10.1007/s10853-015-9479-x

    Article  CAS  Google Scholar 

  2. D. Gu, Laser additive manufacturing of high-performance materials, Laser Addit. Manuf. High-Performance Mater., no. Lm, pp. 1–311, 2015, doi: https://doi.org/10.1007/978-3-662-46089-4

  3. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff and S.S. Babu, The Metallurgy and Processing Science of Metal Additive Manufacturing, Int. Mater. Rev., 2016, 61(5), p 315–360. https://doi.org/10.1080/09506608.2015.1116649

    Article  CAS  Google Scholar 

  4. A. Mostafa, I.P. Rubio, V. Brailovski, M. Jahazi and M. Medraj, Structure, Texture and Phases in 3D Printed IN718 Alloy Subjected to Homogenization and HIP Treatments, Metals (Basel), 2017, 7(6), p 1–23. https://doi.org/10.3390/met7060196

    Article  CAS  Google Scholar 

  5. R. C. Benn and R. P. Salva, “Additively manufactured INCONEL® alloy 718,” 7th Int. Symp. Superalloy 718 Deriv. 2010, vol. 1, pp. 455–469, 2010, doi: https://doi.org/10.1002/9781118495223.ch35

  6. J.J. Beaman et al., “Direct SLS Fabrication of Metals and Ceramics”, in Solid Freeform Fabrication: A New Direction in Manufacturing, Springer, US, 1997, p 245–278

    Book  Google Scholar 

  7. T. Trosch, J. Strößner, R. Völkl and U. Glatzel, Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Compared to Forging and Casting, Mater. Lett., 2016, 164, p 428–431. https://doi.org/10.1016/j.matlet.2015.10.136

    Article  CAS  Google Scholar 

  8. M. Turker, D. Godlinski and F. Petzoldt, Effect of Production Parameters on the Properties of IN 718 Superalloy by Three-Dimensional Printing, Mater. Charact., 2008, 59(12), p 1728–1735. https://doi.org/10.1016/j.matchar.2008.03.017

    Article  CAS  Google Scholar 

  9. Q. Jia and D. Gu, Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties, J. Alloys Compd., 2014, 585, p 713–721. https://doi.org/10.1016/j.jallcom.2013.09.171

    Article  CAS  Google Scholar 

  10. M.H. Farshidianfar, A. Khajepour and A.P. Gerlich, Effect of Real-Time Cooling Rate on Microstructure in Laser Additive Manufacturing, J. Mater. Process. Technol., 2016, 231, p 468–478. https://doi.org/10.1016/j.jmatprotec.2016.01.017

    Article  CAS  Google Scholar 

  11. Z. Wang, K. Guan, M. Gao, X. Li, X. Chen and X. Zeng, The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting, J. Alloys Compd., 2012, 513, p 518–523. https://doi.org/10.1016/j.jallcom.2011.10.107

    Article  CAS  Google Scholar 

  12. K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan and F. Rezai, Effects of Selective Laser Melting Additive Manufacturing Parameters of Inconel 718 on Porosity, Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2018, 735, p 182–190. https://doi.org/10.1016/j.msea.2018.08.037

    Article  CAS  Google Scholar 

  13. U. Scipioni Bertoli, A.J. Wolfer, M.J. Matthews, J.P.R. Delplanque and J.M. Schoenung, On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting, Mater. Des., 2017, 113, p 331–340. https://doi.org/10.1016/j.matdes.2016.10.037

    Article  CAS  Google Scholar 

  14. A. Simchi and H. Pohl, Effects of Laser Sintering Processing Parameters on the Microstructure and Densification of Iron Powder, Mater. Sci. Eng. A, 2003, 359(1–2), p 119–128. https://doi.org/10.1016/S0921-5093(03)00341-1

    Article  CAS  Google Scholar 

  15. H. Gong, K. Rafi, H. Gu, T. Starr and B. Stucker, Analysis of Defect Generation in Ti-6Al-4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes, Addit. Manuf., 2014, 1, p 87–98. https://doi.org/10.1016/j.addma.2014.08.002

    Article  Google Scholar 

  16. S. Tabaie, F. Rézaï-Aria and M. Jahazi, Microstructure Evolution of Selective Laser Melted Inconel 718: Influence of High Heating Rates, Metals (Basel), 2020 https://doi.org/10.3390/met10050587

    Article  Google Scholar 

  17. S. Li, H. Xiao, K. Liu, W. Xiao, Y. Li, X. Han, J. Mazumder and L. Song, Melt-Pool Motion, Temperature Variation and Dendritic Morphology of Inconel 718 During Pulsed- and Continuous-Wave Laser Additive Manufacturing: A Comparative Study, Mater. Des., 2017, 119, p 351–360. https://doi.org/10.1016/j.matdes.2017.01.065

    Article  CAS  Google Scholar 

  18. T. Mukherjee, H.L. Wei, A. De and T. DebRoy, Heat and Fluid Flow in Additive Manufacturing—Part II: Powder Bed Fusion of Stainless Steel, and Titanium, Nickel and Aluminum Base Alloys, Comput. Mater. Sci., 2018, 150(April), p 369–380. https://doi.org/10.1016/j.commatsci.2018.04.027

    Article  CAS  Google Scholar 

  19. M. Balbaa, S. Mekhiel, M. Elbestawi and J. McIsaac, On Selective Laser Melting of Inconel 718: Densification, Surface Roughness, and Residual Stresses, Mater. Des., 2020, 193, p 108818. https://doi.org/10.1016/j.matdes.2020.108818

    Article  CAS  Google Scholar 

  20. L. Nastac, J.J. Valencia, M.L. Tims and F.R. Dax, Advances in the Solidification of IN718 and RS5 Alloys, Proc. Int. Symp. Superalloys Var. Deriv., 2001, 1, p 103–112. https://doi.org/10.7449/2001/superalloys_2001_103_112

    Article  Google Scholar 

  21. V. Manvatkar, A. De and T. DebRoy, Spatial Variation of Melt Pool Geometry, Peak Temperature and Solidification Parameters During Laser Assisted Additive Manufacturing Process, Mater. Sci. Technol. (United Kingdom), 2015, 31(8), p 924–930. https://doi.org/10.1179/1743284714Y.0000000701

    Article  CAS  Google Scholar 

  22. J.J. Lewandowski and M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, Annu. Rev. Mater. Res., 2016, 46, p 151–186. https://doi.org/10.1146/annurev-matsci-070115-032024

    Article  CAS  Google Scholar 

  23. J. Yang, J. Han, Yu. Hanchen, J. Yin, M. Gao, Z. Wang and X. Zeng, Role of Molten Pool Mode on Formability, Microstructure and Mechanical Properties of Selective Laser Melted Ti-6Al-4V Alloy, Mater. Des., 2016, 110, p 558–570. https://doi.org/10.1016/j.matdes.2016.08.036

    Article  CAS  Google Scholar 

  24. C. Kamath, Data Mining and Statistical Inference in Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2016, 86(5–8), p 1659–1677. https://doi.org/10.1007/s00170-015-8289-2

    Article  Google Scholar 

  25. K. Yuan, W.G. Guo, P. Li, J. Wang, Y. Su, X. Lin and Y. Li, Influence of Process Parameters and Heat Treatments on the Microstructures and Dynamic Mechanical Behaviors of Inconel 718 Superalloy Manufactured by Laser Metal Deposition, Mater. Sci. Eng. A, 2018, 721, p 215–225. https://doi.org/10.1016/j.msea.2018.02.014

    Article  CAS  Google Scholar 

  26. Q. Jia and D. Gu, Selective Laser Melting Additive Manufactured Inconel 718 Superalloy Parts: High-Temperature Oxidation Property and its Mechanisms, Opt. Laser Technol., 2014, 62, p 161–171. https://doi.org/10.1016/j.optlastec.2014.03.008

    Article  CAS  Google Scholar 

  27. T. Sanviemvongsak, D. Monceau and B. Macquaire, High Temperature Oxidation of IN 718 Manufactured by Laser Beam Melting and Electron Beam Melting: Effect of Surface Topography, Corros. Sci., 2018, 141(January), p 127–145. https://doi.org/10.1016/j.corsci.2018.07.005

    Article  CAS  Google Scholar 

  28. H.L. Eiselstein, Metallurgy of a Columbium-Hardened Nickel-Chromium-Iron Alloy, in Advances in the Technology of Stainless Steels and Related Alloys, ASTM International, Pennsylvania, 2009, p 62–62–18

    Google Scholar 

  29. H. Qi, M. Azer, and A. Ritter, “Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured INCONEL 718,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 40, no. 10, pp. 2410–2422, 2009, doi: https://doi.org/10.1007/s11661-009-9949-3

  30. P. Tao, H. Li, B. Huang, Q. Hu, S. Gong and Q. Xu, The Crystal Growth, Intercellular Spacing and Microsegregation of Selective Laser Melted Inconel 718 Superalloy, Vacuum, 2019, 159, p 382–390. https://doi.org/10.1016/j.vacuum.2018.10.074

    Article  CAS  Google Scholar 

  31. E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac and T. Kurzynowski, Effect of Heat Treatment on the Microstructure and Mechanical Properties of Inconel 718 Processed by Selective Laser Melting, Mater. Sci. Eng. A, 2015, 639, p 647–655. https://doi.org/10.1016/j.msea.2015.05.035

    Article  CAS  Google Scholar 

  32. V. Manvatkar, A. De and T. Debroy, Heat Transfer and Material Flow During Laser-Assisted Multi-Layer Additive Manufacturing, J. Appl. Phys., 2014, 116(12), p 1–8. https://doi.org/10.1063/1.4896751

    Article  CAS  Google Scholar 

  33. J. Li, Z. Zhao, P. Bai, H. Qu, B. Liu, L. Li, L. Wu, R. Guan, H. Liu and Z. Guo, Microstructural Evolution and Mechanical Properties of IN718 Alloy Fabricated by Selective Laser Melting Following Different Heat Treatments, J. Alloys Compd., 2019, 772, p 861–870. https://doi.org/10.1016/j.jallcom.2018.09.200

    Article  CAS  Google Scholar 

  34. R. Priya Parida and V. Senthilkumar, Experimental Studies of Defect Generation in Selective Laser Melted Inconel 718 Alloy, Mater. Today Proc., 2021, 39(4), p 1372–1377. https://doi.org/10.1016/j.matpr.2020.04.698

    Article  CAS  Google Scholar 

  35. P. Kumar, J. Farah, J. Akram, C. Teng, J. Ginn and M. Misra, Influence of Laser Processing Parameters on Porosity in Inconel 718 During Additive Manufacturing, Int. J. Adv. Manuf. Technol., 2019, 103(1–4), p 1497–1507. https://doi.org/10.1007/s00170-019-03655-9

    Article  Google Scholar 

  36. A. Brown, Z. Jones, and W. Tilson, “Classification, Effects, and Prevention of Build Defects in Powder-Bed Fusion Printed Inconel 718,” 146th TMS 2017 Annu. Meet. Exhib., 2017

  37. B. Zhang, Y. Li and Q. Bai, Defect Formation Mechanisms in Selective Laser Melting: A Review, Chinese J. Mech. Eng., 2017, 30(3), p 515–527. https://doi.org/10.1007/s10033-017-0121-5

    Article  Google Scholar 

  38. C. Qiu, N.J.E. Adkins and M.M. Attallah, Microstructure and Tensile Properties of Selectively Laser-Melted and of HIPed Laser-Melted Ti-6Al-4V, Mater. Sci. Eng. A, 2013, 578, p 230–239. https://doi.org/10.1016/j.msea.2013.04.099

    Article  CAS  Google Scholar 

  39. M. Xia, D. Gu, G. Yu, D. Dai, H. Chen and Q. Shi, Porosity Evolution and its Thermodynamic Mechanism of Randomly Packed Powder-Bed During Selective Laser Melting of Inconel 718 Alloy, Int. J. Mach. Tools Manuf., 2017, 116, p 96–106. https://doi.org/10.1016/j.ijmachtools.2017.01.005

    Article  Google Scholar 

  40. D. Gu and Y. Shen, Balling Phenomena in Direct Laser Sintering of Stainless Steel Powder: Metallurgical Mechanisms and Control Methods, Mater. Des., 2009, 30(8), p 2903–2910. https://doi.org/10.1016/j.matdes.2009.01.013

    Article  CAS  Google Scholar 

  41. T. Larimian, M. Kannan, D. Grzesiak, B. AlMangour and T. Borkar, Effect of Energy Density and Scanning Strategy on Densification, Microstructure and Mechanical Properties of 316L Stainless Steel Processed via Selective Laser Melting, Mater. Sci. Eng. A, 2020, 770, p 138455. https://doi.org/10.1016/j.msea.2019.138455

    Article  CAS  Google Scholar 

  42. B. AlMangour, D. Grzesiak, T. Borkar and J.M. Yang, Densification Behavior, Microstructural Evolution, and Mechanical Properties of TiC/316L Stainless Steel Nanocomposites Fabricated by Selective Laser Melting, Mater. Des., 2018, 138, p 119–128. https://doi.org/10.1016/j.matdes.2017.10.039

    Article  CAS  Google Scholar 

  43. Y.N. Zhang, X. Cao, P. Wanjara and M. Medraj, Oxide Films in Laser Additive Manufactured Inconel 718, Acta Mater., 2013, 61(17), p 6562–6576. https://doi.org/10.1016/j.actamat.2013.07.039

    Article  CAS  Google Scholar 

  44. X. Wang and K. Chou, Effects of Thermal Cycles on the Microstructure Evolution of Inconel 718 During Selective Laser Melting Process, Addit. Manuf., 2017, 18, p 1–14. https://doi.org/10.1016/j.addma.2017.08.016

    Article  CAS  Google Scholar 

  45. H. Yang, L. Meng, S. Luo and Z. Wang, Microstructural Evolution and Mechanical Performances of Selective Laser Melting Inconel 718 from Low to High Laser Power, J. Alloys Compd., 2020, 828, p 154473. https://doi.org/10.1016/j.jallcom.2020.154473

    Article  CAS  Google Scholar 

  46. Y.L. Kuo, S. Horikawa and K. Kakehi, The Effect of Interdendritic δ Phase on the Mechanical Properties of Alloy 718 Built up by Additive Manufacturing, Mater. Des., 2017, 116, p 411–418. https://doi.org/10.1016/j.matdes.2016.12.026

    Article  CAS  Google Scholar 

  47. H.L. Wei, J. Mazumder and T. DebRoy, Evolution of Solidification Texture During Additive Manufacturing, Sci. Rep., 2015, 5, p 1–7. https://doi.org/10.1038/srep16446

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Chakravarthy, P., Manwatkar, S.K. et al. Effect of Scan Speed and Laser Power on the Nature of Defects, Microstructures and Microhardness of 3D-Printed Inconel 718 Alloy. J. of Materi Eng and Perform 30, 7057–7070 (2021). https://doi.org/10.1007/s11665-021-06163-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06163-8

Keywords

Navigation