Skip to main content

Advertisement

Log in

In Vitro Degradation Behavior of Ti-Microalloyed AZ31 Magnesium Alloy in Simulated Body Fluid

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Corrosion and corrosion-related mechanical behaviors of Ti-microalloyed AZ31 Mg alloy (AZ31Ti) in simulated body fluid (SBF) under a dynamic environment were investigated. AZ31 Mg alloy was used as a control alloy. Microstructure analysis of the samples was performed by using a scanning electron microscope and an x-ray diffractometer. Mass loss measurements and corrosion-related tensile tests were carried out by immersing the samples in the SBF solution at \(37.5 \pm 0.5\) °C for 24, 72, and 336 h under dynamic conditions. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements were also employed in the SBF solution at \(37.5 \pm 0.5\) °C. Microstructural studies showed that the β (\({\text{Mg}}_{17} {\text{Al}}_{12}\)) intermetallic phases in the AZ31 alloy are dispersed in the microstructure and formed as relatively angular particles, and that the dimensions of the β phases transformed to a smaller size and globular form with Ti microalloying. While the tensile strength and hardness values of AZ31 and AZ31Ti alloys were similar to each other, Ti microalloying showed a considerable increase in the yield strength and elongation. This study suggests that microalloying of AZ31 alloy with Ti is beneficial in terms of their corrosion resistance and corrosion-related mechanical properties in an SBF environment under dynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  1. J. Chen, L. Tan, X. Yu, I.P. Etim, M. Ibrahim and K. Yang, Mechanical Properties of Magnesium Alloys for Medical Application: A review, J Mech Behav Biomed., 2018, 87, p 68–79.

    Article  CAS  Google Scholar 

  2. S. Amani and G. Faraji, Processing and Properties of Biodegradable Magnesium Microtubes for Using as Vascular Stents: A Brief Review, Met Mater Int., 2019, 25, p 1341–1359.

    Article  CAS  Google Scholar 

  3. N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar and M. Koç, Review of Magnesium-Based Biomaterials and Their Applications, J. Magnes. Alloys, 2018, 6, p 23–43.

    Article  CAS  Google Scholar 

  4. S. Agarwal, J. Curtin, B. Duffy and S. Jaiswal, Biodegradable Magnesium Alloys for Orthopaedic Applications: A review on Corrosion Biocompatibility and Surface Modifications, Mater. Sci. Eng. C, 2016, 68, p 948–963.

    Article  CAS  Google Scholar 

  5. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth and H. Windhagen, In vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response, Biomaterials, 2005, 26, p 3557–3565.

    Article  CAS  Google Scholar 

  6. G. Yuan and J. Niu, Research Progress of Biodegradable Magnesium Alloys for Orthopedic Applications, Acta Metall. Sin., 2017, 53, p 1168–1180.

    CAS  Google Scholar 

  7. K. Pichler, S. Fischerauer, P. Ferlic, E. Martinelli, H.P. Brezinsek, P.J. Uggowitzer, J.F. Loffler and A.M. Weinberg, Immunological Response to Biodegradable Magnesium Implants, JOM, 2014, 66, p 573–579.

    Article  CAS  Google Scholar 

  8. Y. Chen, J. Dou, H. Yu and C. Chen, Degradable Magnesium-Based Alloys for Biomedical Applications: The Role of Critical Alloying Elements, J. Biomater. Appl., 2019, 33, p 1348–1372.

    Article  CAS  Google Scholar 

  9. X. Zhang, J. Dai, Q. Dong, Z. Ba and Y. Wu, Corrosion behavior and Mechanical Degradation of as-Extruded Mg-Gd-Zn-Zr Alloys for Orthopedic Application, J. Biomed. Mater. Res. B, 2020, 1088, p 698–708.

    Article  Google Scholar 

  10. Y. Sasikumar, A.M. Kumar, R. Suresh-Babu, P. Dhaiveegan, N. Al-Aqeeli and A.L.F. de Barros, Fabrication of Brushite Coating on AZ91D and AZ31 Alloys by Two-Step Chemical Treatment and Its Surface Protection in Simulated Body Fluid, J. Mater. Eng. Perform., 2019, 28, p 3803–3815.

    Article  CAS  Google Scholar 

  11. X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng and H.Y. Wang, What is Going on in Magnesium Alloys?, J. Mater. Sci. Technol., 2018, 34, p 245–247.

    Article  Google Scholar 

  12. M.B. Kannan, Influence of Microstructure on the in-vitro Degradation Behaviour of Magnesium Alloy, Mater. Lett., 2010, 64, p 739–742.

    Article  CAS  Google Scholar 

  13. X. Gong, J. Chen, H. Yan, W. Xia, B. Su, Z. Yu and H. Yin, Effects of Minor Sr Addition on Biocorrosion and Stress Corrosion Cracking of As-Cast Mg-4Zn Alloys, Corrosion, 2020, 76, p 71–81.

    Article  CAS  Google Scholar 

  14. K. Gusieva, C.H.J. Davies, J.R. Scully and N. Birbilis, Corrosion of Magnesium Alloys: The Role of Alloying, Int. Mater. Rev., 2015, 60, p 169–194.

    Article  CAS  Google Scholar 

  15. Y. Ding, C. Wen, P. Hodgson and Y. Li, Effects of Alloying Elements on the Corrosion Behavior and Biocompatibility of Biodegradable Magnesium Alloys: A Review, J. Mater. Chem. B, 2014, 2, p 1912–1933.

    Article  CAS  Google Scholar 

  16. M.B. Kannan and R.K.S. Raman, In Vitro Degradation and Mechanical Integrity of Calcium-Containing Magnesium Alloys in Modified-Simulated Body Fluid, Biomaterials, 2008, 29, p 2306–2314.

    Article  CAS  Google Scholar 

  17. G. Wu, Y. Fan, H. Gao, C. Zhai and Y.P. Zhu, The Effect of Ca and Rare Earth Elements on the Microstructure, Mechanical Properties and Corrosion Behaviour of AZ91D, Mater. Sci. Eng. A, 2005, 408, p 255–263.

    Article  Google Scholar 

  18. Z. Li, X. Gu, S. Lou and Y. Zheng, The Development of Binary Mg-Ca Alloys for use as Biodegradable Materials Within Bone, Biomaterials, 2008, 29, p 1329–1344.

    Article  CAS  Google Scholar 

  19. Y. Liu, Q. Wang, Y. Song, D. Zhang, S. Yu and X. Zhu, A study on the Corrosion Behavior of Ce-Modified Cast AZ91 Magnesium Alloy in the Presence of Sulfate-Reducing Bacteria, J. Alloys Compd., 2009, 473, p 550–556.

    Article  CAS  Google Scholar 

  20. N. Hort, Y. Huang, D. Fechner, M. Stormer, C. Blawert, F. Witte, C. Vogt, H. Drucker, R. Willumeit, K.U. Kainer and F. Feyerabend, Magnesium Alloys as Implant Materials-Principles of Property Design for Mg–RE Alloys, Acta Biomater., 2010, 6, p 1714–1725.

    Article  CAS  Google Scholar 

  21. P.C. Ferreira, K.A. de Piai, A.M. Takayanagui and S.I. Segura-Muñoz, Aluminum as a Risk Factor for Alzheimer’s Disease, Lat. Am. Enfermagem, 2008, 16, p 151–157.

    Article  Google Scholar 

  22. H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar and E. Hamzah, Mechanical and Bio-Corrosion Properties of Quaternary Mg-Ca-Mn-Zn Alloys Compared with Binary Mg-Ca Alloys, Mater. Des., 2014, 53, p 283–292.

    Article  CAS  Google Scholar 

  23. J. Gonzalez, R.Q. Hou, E.P.S. Nidadavolu, R. Willumeit-Römer and F. Feyerabend, Magnesium Degradation under Physiological Conditions-Best Practice, Bioact, Mater., 2018, 3, p 174–185.

    Article  Google Scholar 

  24. J. Wang, Y. Jang, G. Wan, V. Giridharan, G.L. Song, Z. Xu, Y. Koo, P. Qi, J. Sankar, N. Huang and Y. Yun, Flow-Induced Corrosion of Absorbable Magnesium Alloy: In-situ and Real-Time Electrochemical Study, Corros. Sci., 2016, 104, p 277–289.

    Article  CAS  Google Scholar 

  25. A.P. Md Saad, R.A. Abdul Rahim, M.N. Harun, H. Basri, J. Abdullah, M.R. Abdul Kadir and A. Syahrom, The influence of Flow Rates on the Dynamic Degradation Behaviour of Porous Magnesium Under a Simulated Environment of Human Cancellous Bone, Mater. Des., 2017, 122, p 268–279.

    Article  CAS  Google Scholar 

  26. T. Wang, D. Kevorkov, A. Mostafa and M. Medraj, Experimental Investigation of the Phase Equilibria in the Al-Mn-Zn System at 400 °C, J. Mater., 2014, 2014, p 1–13.

    Google Scholar 

  27. Y. Koo, T. Tiasha, V.N. Shavov and Y. Yun, Expandable Mg-based Helical Stent Assessment using Static, Dynamic, and Porcine Ex Vivo Models, Sci. Rep., 2017, 7–1173, p 1–10.

    Google Scholar 

  28. L. Han, X. Lib, J. Baia, F. Xuea, Y. Zhengc and C. Chu, Effects of Flow Velocity and Different Corrosion Media on the in Vitro Biocorrosion Behaviors of AZ31 Magnesium Alloy, Mater Chem Phys., 2018, 217, p 300–307.

    Article  CAS  Google Scholar 

  29. S. Candan, M. Unal, E. Koc, Y. Turen and E. Candan, Effects of Titanium Addition on Mechanical and Corrosion Behaviours of AZ91 Magnesium Alloy, J. Alloys Compd., 2011, 509, p 1958–1963.

    Article  CAS  Google Scholar 

  30. S. Candan, M. Celik and E. Candan, Effectiveness of Ti-Micro Alloying in Relation to Cooling Rate on Corrosion of AZ91 Mg Alloy, J. Alloys Compd., 2016, 672, p 197–203.

    Article  CAS  Google Scholar 

  31. E. Candan, S. Candan, M. Unal, Y. Turen and E. Koc, High Strength and Corrosion Resistant Mg alloys Microalloyed with Ti or/and Pb, Turkish Patent Office, Patent No TR 2008 09986 B, 2008.

  32. H.Y. Choi and W.J. Kim, Development of the Highly Corrosion Resistant AZ31 Magnesium Alloy by the Addition of a Trace Amount of Ti, J. Alloys Compd., 2016, 664, p 25–37.

    Article  CAS  Google Scholar 

  33. H.Y. Choi and W.J. Kim, The Improvement of Corrosion Resistance of AZ91 Magnesium Alloy Through Development of Dense and Tight Network Structure of Al-Rich a Phase by Addition of a Trace Amount of Ti, J. Alloys Compd., 2017, 696, p 736–745.

    Article  CAS  Google Scholar 

  34. T. Kokubo and H. Takadama, How Useful is SBF in Predicting in Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915.

    Article  CAS  Google Scholar 

  35. H. Zhao, P. Li and L. He, Microstructure and Mechanical Properties of an Asymmetric Twin-Roll Cast AZ31 Magnesium Alloy Strip, J. Mater. Process Technol., 2012, 212, p 1670–1675.

    Article  CAS  Google Scholar 

  36. L. Wu, F. Pan, M. Yang and R. Cheng, An Investigation of Second Phases in as-Cast AZ31 Magnesium Alloys with Different Sr Contents, J. Mater. Sci., 2013, 48, p 5456–5469.

    Article  CAS  Google Scholar 

  37. H. Baker, Alloy Phase Diagrams, ASM Handbook, 1998, 3, p 280.

    Google Scholar 

  38. I. Polmear, D.S. John, J.F. Nie, M. Qian, Light Alloys, 5th Edn., Butterworth-Heinemann, Oxford, 2017.

  39. S. Candan and E. Candan, Comparative Study on Corrosion Behaviors of Mg-Al-Zn Alloys, Trans. Nonferrous Met. Soc. China, 2018, 28, p 642–650.

    Article  CAS  Google Scholar 

  40. P. Zhao, Q. Wang, C. Zhai and Y. Zhu, Effects of Strontium and Titanium on the Microstructure, Tensile Properties and Creep Behavior of AM50 Alloys, Mater. Sci. Eng. A, 2007, 444, p 318–326.

    Article  Google Scholar 

  41. J.Y. Choi and W.J. Kim, Significant Effects of Adding Trace Amounts of Ti on the Microstructure and Corrosion Properties of Mg-6A-1Zn Magnesium Alloy, J. Alloys Compd., 2014, 614, p 49–55.

    Article  CAS  Google Scholar 

  42. X. Ai and G. Quan, Effect of Ti on the Mechanical Properties and Corrosion of Cast AZ91 Magnesium Alloy, Open Mater. Sci. J., 2012, 6, p 6–13.

    Article  CAS  Google Scholar 

  43. E. Mena-Morcillo and L. Veleva, Degradation of AZ31 and AZ91 Magnesium Alloys in different Physiological Media: Effect of Surface Layer Stability on Electrochemical Behaviour, J. Magnes. Alloys, 2020, 8, p 667–675.

    Article  CAS  Google Scholar 

  44. A.D. Sudholz, N. Birbilis, C.J. Bettles and M.A. Gibson, Corrosion Behaviour of Mg-alloy AZ91E with Atypical Alloying Additions, J. Alloys Compd., 2009, 471, p 109–115.

    Article  Google Scholar 

  45. R. Bertolini, S. Bruschia, A. Ghiottia, L. Pezzatoa and M. Dabalàa, The Effect of Cooling Strategies and Machining Feed Rate on the Corrosion Behavior and Wettability of AZ31 Alloy for Biomedical Applications, Procedia CIRP, 2017, 65, p 7–12.

    Article  Google Scholar 

  46. S. Candan, S. Cim and E. Candan, Effectiveness of Ti Micro-Alloying for the Suppression of Fe Impurities in AZ91 Mg Alloys and Associated Corrosion Properties, Mater. Test., 2019, 61, p 1165–1170.

    Article  CAS  Google Scholar 

  47. M. Liu, S. Zanna, H. Ardelean, I. Frateur, P. Schmutz, G. Song, A. Atrens and P. Marcus, A first Quantitative XPS Study of the Surface Films Formed, by Exposure to Water, on Mg and on the Mg–Al Intermetallics: Al3Mg2 and Mg17Al12, Mater. Sci. Eng. C, 2016, 68, p 948–963.

    Google Scholar 

  48. G.L. Song and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 1999, 1, p 11–33.

    Article  CAS  Google Scholar 

  49. M. Esmaily, D.B. Blücher, J.E. Svensson, M. Halvarsson and L.G. Johansson, New Insights into the Corrosion of Magnesium Alloys-The Role of Aluminum, Scr. Mater., 2016, 115, p 91–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by Bilecik Seyh Edebali University, Grant No: 2018-01.BŞEU.03-02. The authors would like to thank Fethi Candan for construction of the real-time dynamic corrosion test apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Candan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candan, S., Emir, S. & Candan, E. In Vitro Degradation Behavior of Ti-Microalloyed AZ31 Magnesium Alloy in Simulated Body Fluid. J. of Materi Eng and Perform 31, 1–10 (2022). https://doi.org/10.1007/s11665-021-06142-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06142-z

Keywords

Navigation