Skip to main content
Log in

Surface and Grain Boundary Energies as well as Surface Mass Transport in Polycrystalline MgO

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The sessile drop technique has been used to measure the contact angles, θ, of the liquid metals Ag and Cu in contact with polycrystalline magnesium oxide (MgO) in the temperature ranges 1293-1623 K and 1393-1633 K, respectively, in Ar/4%H2 atmosphere. The measured contact angles indicated non-wetting (θ > 90°). Combination of the experimental results with literature data for non-wetted and non-reactive oxide/liquid metal systems permitted the calculation of the temperature dependence of the surface energy of MgO. Thermal etching experiments in argon atmosphere on the grain boundaries intersecting the surface of the polycrystalline ceramic allowed determining the formed groove angles, ψ, with respect to temperature and time, as well as the grain boundary energy. Grain boundary grooving studies in the temperature range 1473-1773 K showed that surface diffusion is the dominant mechanism of mass transport in MgO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5.
Fig 6.
Fig 7.

Similar content being viewed by others

References

  1. N. Eustathopoulos, M. G. Nicholas and B. Drevet, Wettability at High Temperatures, Pergamon Materials Series Vol. 3, Ed. R. W. Cahn, 1999 Elsevier Science Ltd, ISBN 0-08-042146-6, p 419

  2. W.D. Kingery, Metal-Ceramic Interactions: IV, Absolute Measurement of Metal-Ceramic Interfacial Energy and the Interfacial Adsorption of Silicon from Iron-Silicon Alloys, J. Am. Ceram. Soc., 1954, 379(2), p 42–45.

    Article  Google Scholar 

  3. C. Herring, Some Theorems on the Free Energies of Crystal Surfaces, Phys. Rev., 1951, 82(1), p 87–93.

    Article  CAS  Google Scholar 

  4. W.W. Mullins, Theory of Thermal Grooving, J. Appl. Phys., 1957, 28(3), p 333–339.

    Article  CAS  Google Scholar 

  5. W.W. Mullins, Flattening of a Nearly Plane Solid Surface due to Capillarity, J. Appl. Phys., 1959, 30(1), p 77–83.

    Article  Google Scholar 

  6. A. A. Griffith, VI. The Phenomena of Rupture and Flow in Solids, Philos. T. R. S-A., 1921, 221, p 163-198

  7. H. Hertz, Hertz’s Miscellaneous Papers, Nature, 1896, 55(1410), p 6–9.

    Article  Google Scholar 

  8. G. Lipsett, F.M.G. Johnson and O. Maass, The Surface Energy and the Heat of Solution of Solid Sodium Chloride. I, J. Am. Chem. Soc., 1927, 49(4), p 925–943.

    Article  CAS  Google Scholar 

  9. S. Amelinckx, N.F. Binnendijk and W. Dekeyser, Interferometric Measurements of Grain Boundary Grooves, Physica, 1953, 19(1–12), p 1173–1177.

    Article  Google Scholar 

  10. P. Nikolopoulos and S. Agathopoulos, Interfacial Phenomena in Al2O3-Liquid Metal and Al2O3-Liquid Alloy Systems, J. Eur. Ceram. Soc., 1992, 10(6), p 415–424.

    Article  CAS  Google Scholar 

  11. T. Hibiya, K. Morohoshi and S. Ozawa, Oxygen partial pressure dependence of the surface tension and its temperature coefficient for metallic melts: a discussion from the viewpoint of solubility and adsorption of oxygen, J. Mater. Sci., 2010, 45(8), p 1986–1992.

    Article  CAS  Google Scholar 

  12. S. Ozawa, K. Morohoshi, T. Hibiya and H. Fukuyama, Influence of oxygen partial pressure on surface tension of molten silver, J. Appl. Phys., 2010, 107(1), p 014910.

    Article  Google Scholar 

  13. Z. Morita and A. Kasama, Effect of a Slight Amount of Dissolved Oxygen on the Surface Tension of Liquid Copper, T. Jpn. I. Met., 1980, 21(8), p 522–530.

    CAS  Google Scholar 

  14. J. Lee, T. Tanaka, Y. Asano and S. Hara, Oxygen Adsorption on the Surface of Liquid Cu–Ag Alloys, Mater. Trans., 2004, 45(8), p 2719–2722.

    Article  CAS  Google Scholar 

  15. I. Karakaya and W.T. Thompson, The Ag-O (Silver-Oxygen) System, J. Phase Equilb., 1992, 13(2), p 137–142.

    Article  CAS  Google Scholar 

  16. Y.A. Chang, K. Fitzner and M.X. Zhang, The Solubility of Gases in Liquid Metals and Alloys, Prog. Mater. Sci., 1988, 32(2–3), p 97–259.

    Article  CAS  Google Scholar 

  17. N. Eustathopoulos and B. Drevet, Determination of the Nature of Metal-Oxide Interfacial Interactions from Sessile Drop Data, Mater. Sci. Eng. A, 1998, 249(1–2), p 176–183.

    Article  Google Scholar 

  18. N. Zouvelou, X. Mantzouris and P. Nikolopoulos, Interfacial Energies in Oxide/Liquid Metal Systems with Limited Solubility, Int. J. Adhes. Adhes., 2007, 27(5), p 380–386.

    Article  CAS  Google Scholar 

  19. K. Nogi, K. Oishi and K. Ogino, Wettability of Solid Oxides by Liquid Pure Metals, Mater. T. JIM, 1989, 30(2), p 137–145.

    Article  Google Scholar 

  20. D. T. Livey and P. Murray 1955 The Wetting Properties of Solid Oxides and Carbides by Liquid Metals. 2nd Plansee Seminar, p 375–404

  21. L. Zagar and W. Bernhardt, Beitrag zur Frage der Bindefähigkeit verschiedener Metalle mit Nichtmetallen als Grundbedingung bei der Herstellung von Cermets, Forschungsberichte des Landes N.R.W. Nr. 1733, Westdeutscherverlag, Köln, 1966, p 1–82, in German

  22. A. Trampert, F. Ernst, C.P. Flynn, H.F. Fischmeister and M. Rühle, High Resolution Transmission Electron Microscopy Studies of the Ag/MgO Interface, Acta metall. mater., 1992, 40(Supplement), p S227–S236.

    Article  CAS  Google Scholar 

  23. G. Triantafyllou, G.N. Angelopoulos and P. Nikolopoulos, Surface and Grain-Boundary Energies as well as Surface Mass Transport in Polycrystalline Yttrium Oxide, J. Mater. Sci., 2010, 45(8), p 2015–2022.

    Article  CAS  Google Scholar 

  24. R. H. Bruce, Aspects of the Surface Energy of Ceramics I-Calculation of Surface Free Energies, Science of Ceramics, G. H. Stewart Ed., The British Ceramic Society, Academic Press, London, 1965, p 359-381

  25. J.J. Gilman, Direct Measurements of the surface Energies of Crystals, J. Appl. Phys., 1960, 31(12), p 2208–2218.

    Article  CAS  Google Scholar 

  26. A.R.C. Westwood and D.L. Goldheim, Cleavage Surface Energy of 100 Magnesium Oxide, J. Appl. Phys., 1963, 34(11), p 3335–3339.

    Article  CAS  Google Scholar 

  27. G. Jura and C.W. Garland, The Experimental Determination of the Surface Tension of Magnesium Oxide, J. Am. Chem. Soc., 1952, 74(23), p 6033–6034.

    Article  CAS  Google Scholar 

  28. N.H. Leeuw and S.C. Parker, Molecular-Dynamics Simulation of MgO Surfaces in Liquid Water using a Shell-Model Potential for Water, Phys. Rev, B, 1998, 58(20), p 13901–13908.

    Article  Google Scholar 

  29. P. Lazar and M. Otyepka, Accurate Surface Energies from First Principles, Phys. Rev. B, 2015, 91(11), p 115402 (1–5).

    Article  Google Scholar 

  30. A.J. Logsdail, D. Mora-Fonz, D.O. Scanlon, C.R.A. Catlow and A.A. Sokol, Structural, Energetic and Electronic Properties of (100) Surfaces for Alkaline Earth Metal Oxides as Calculated with Hybrid Density Functional Theory, Surf. Sci., 2015, 642, p 58–65.

    Article  CAS  Google Scholar 

  31. W. Xu, A.P. Horsfield, D. Wearing and P.D. Lee, First-Principles Calculation of Mg/MgO Interfacial free Energies, J. Alloy. Compd., 2015, 650, p 228–238.

    Article  CAS  Google Scholar 

  32. G.C. Benson and R. McIntosh, Same Calculations of the Surface Energy of Magnesium Oxide, Can. J. Chem., 1955, 33(11), p 1677–1681.

    Article  CAS  Google Scholar 

  33. D.N. Zhang, L. Zhao, J.F. Wang and Y.L. Li, Electronic Structures and the Stability of MgO Surface: Density Functional Study, Surf. Rev. Lett., 2015, 22(01), p 1550037 (1–9).

    Google Scholar 

  34. R.A. Evarestov and A.V. Bandura, HF and DFT Calculations of MgO Surface Energy and Electrostatic Potential using Two- and Three Periodic Models, Int. J. Quantum Chem., 2004, 100(4), p 452–459.

    Article  CAS  Google Scholar 

  35. G.W. Watson, E.T. Kelsey, N.H. de Leeuw, D.J. Harris and S.C. Parker, Atomistic Simulation of Dislocations, Surfaces and Interfaces in MgO, J. Chem. Soc. Faraday Trans., 1996, 92(3), p 433–438.

    Article  CAS  Google Scholar 

  36. M. Baudin, M. Wójcik and K. Hermansson, A Molecular Dynamics Study of MgO (111) slabs, Surf. Sci., 1997, 375(2–3), p 374–384.

    Article  CAS  Google Scholar 

  37. A. Wander, I.J. Bush and N.M. Harrison, Stability of Rocksalt Polar Surfaces: An ab initio Study of MgO(111) and NiO(111), Phys. Rev. B, 2003, 68(23), p 233405 (1–4).

    Article  Google Scholar 

  38. R. Chatzimichail, S. Bebelis and P. Nikolopoulos, Temperature Dependence of the Surface Energy of the Low Index Planes of UO2 and ThO2, J. Mater. Eng. Perform, 2016, 25, p 1691–1696.

    Article  CAS  Google Scholar 

  39. S. Bebelis and P. Nikolopoulos, Temperature Dependence of the Surface Energy of the Low-index Planes of CaF2, BaF2 and SrF2, J. Mater. Eng. Perform., 2017, 26(3), p 1223–1228.

    Article  CAS  Google Scholar 

  40. A.S. Skapski, A Theory of Surface Tension of Solids – I* Application to Metals, Acta Metall., 1956, 4(6), p 576–582.

    Article  CAS  Google Scholar 

  41. C. Ronchi and M. Sheindlin, Melting Point of MgO, J. Appl. Phys., 2001, 90(7), p 3325–3331.

    Article  CAS  Google Scholar 

  42. G. Pocchioni and H. Freund, Electron Transfer at Oxide Surfaces. The MgO Paradigm: from Defect to Ultrathin Films, Chem. Rev., 2013, 113(6), p 4035–4072.

    Article  Google Scholar 

  43. R.R. Reeber, K. Goessel and K. Wang, Thermal Expansion and Molar Volume of MgO, Periclase, from 5 to 2900K, Eur. J. Mineral., 1995, 7(5), p 1039–1047.

    Article  CAS  Google Scholar 

  44. A.L. Leu, S.M. Ma and H. Eyring, Properties of Molten Magnesium Oxide, Proc. Nat. Acad. Sci. USA, 1975, 72(3), p 1026–1030.

    Article  CAS  Google Scholar 

  45. N. Ikemiya, J. Umemoto, S. Hara and K. Ogino, Surface Tensions and Densities of Molten Al2O3, Ti2O3, V2O5 and Nb2O5, ISIJ Int., 1993, 33(1), p 156–165.

    Article  CAS  Google Scholar 

  46. G.S. Rohrer, Grain Boundary Energy Anisotropy: A Review, J. Mater. Sci., 2011, 46(18), p 5881–5895.

    Article  CAS  Google Scholar 

  47. E.N. Hodkin and M.G. Nicholas, Surface and Interfacial Properties of Stoichiometric Uranium Dioxide, J. Nucl. Mater., 1973, 47(1), p 23–30.

    Article  CAS  Google Scholar 

  48. P. Nikolopoulos, S. Nazaré and F. Thümmler, Surface, Grain Boundary and Interfacial Energies in UO2 and UO2-Ni, J. Nucl. Mater., 1977, 71(1), p 89–94.

    Article  CAS  Google Scholar 

  49. P. Nikolopoulos, Surface, Grain-Boundary and Interfacial Energies in Al2O3 and Al2O3-Sn, Al2O3-Co Systems, J. Mater. Sci., 1985, 20(11), p 3993–4000.

    Article  CAS  Google Scholar 

  50. A. Tsoga and P. Nikolopoulos, Groove Angles and Surface Mass Transport in Polycrystalline Alumina, J. Am. Ceram. Soc., 1994, 77(4), p 954–960.

    Article  CAS  Google Scholar 

  51. N. Zouvelou, X. Mantzouris and P. Nikolopoulos, Surface and Grain-Boundary Energies as well as Surface Mass Transport in Polycrystalline CeO2, Mat. Sci. Eng. A, 2008, 495(1–2), p 54–59.

    Article  Google Scholar 

  52. D. Sotiropoulou and P. Nikolopoulos, Surface and Grain-Boundary Energies in Cubic Zirconia, J. Mater. Sci., 1991, 26(5), p 1395–1400.

    Article  CAS  Google Scholar 

  53. A. Tsoga and P. Nikolopoulos, Surface and Gain-Boundary Energies in Yttria-stabilized Zirconia (YSZ-8mol%), J. Mater. Sci., 1996, 31(20), p 5409–5413.

    Article  CAS  Google Scholar 

  54. C.A. Handwerker, J.M. Dynys, R.M. Cannon and R.L. Coble, Dihedral Angles in Magnesia and Alumina: Distributions from Surface Thermal Grooves, J. Am. Ceram. Soc., 1990, 73(5), p 1371–1377.

    Article  CAS  Google Scholar 

  55. D.M. Saylor and G.S. Rohrer, Measuring the Influence of Grain-Boundary Misorientation on Thermal Groove Geometry in Ceramic Polycrystals, J. Am. Ceram. Soc., 1999, 82(6), p 1529–1536.

    Article  CAS  Google Scholar 

  56. C.A. Handwerker, J.M. Dynys, R.M. Cannon and R.L. Coble, Metal Reference Line Technique for Obtaining Dihedral Angles from Surface Thermal Grooves, J. Am. Ceram. Soc., 1990, 73(5), p 1365–1370.

    Article  CAS  Google Scholar 

  57. P. Hirel, G.F.B. Moladje, P. Carrez and P. Cordier, Systematic Theoretical Study οf [001] Symmetric Tilt Grain Boundaries in MgO from 0 to 120 GPa, Phys. Chem. Miner., 2019, 46(1), p 37–49.

    Article  CAS  Google Scholar 

  58. T. Yokoi, Y. Arakawa, K. Ikawa, A. Nakamura and K. Matsunaga, Dependence of Excess Vibrational Entropies on Grain Boundary Structures in MgO: A First-Principles Lattice Dynamics, Phys. Rev. Mater., 2020, 4(2), p 026002 (1–10).

    Google Scholar 

  59. K.P. McKenna and A.L. Shluger, First-Principles Calculations of Defects near a Grain Boundary in MgO, Phys. Rev. B, 2009, 79(22), p 224116 (1–11).

    Article  Google Scholar 

  60. W.M. Robertson, Grain Boundary Grooving by Surface Diffusion for Finite Surface Slopes, J. Appl. Phys., 1971, 42(1), p 463–467.

    Article  Google Scholar 

  61. J. Henney and J.W.S. Jones, Surface-Diffusion Studies on UO2 and MgO, J. Mater. Sci., 1968, 3(2), p 158–164.

    Article  CAS  Google Scholar 

  62. W.M. Robertson, Surface Diffusion of Oxides (A Review), J. Nucl. Mater., 1969, 30(1–2), p 36–49.

    Article  CAS  Google Scholar 

  63. S.A. Lytle and V.S. Stubican, Surface Diffusion in MgO and Cr-Doped MgO, J. Am. Ceram. Soc., 1982, 65(4), p 210–212.

    Article  CAS  Google Scholar 

  64. P. Šajgalik, Z. Panek and M. Uhrik, The Surface Diffusion Coefficients of MgO and Al2O3, J. Mater. Sci., 1987, 22(12), p 4460–4464.

    Article  Google Scholar 

  65. S. Kleiman and R. Chaim, Thermal Stability of MgO Nanoparticles, Mater. Lett., 2007, 61(23–24), p 4489–4491.

    Article  CAS  Google Scholar 

  66. S. Yoshimura, K. Hine, M. Kiuchi, J. Hashimoto, M. Terauchi, Y. Honda, M. Nishitani and S. Hamaguchi, Experimental Evaluation of CaO SrO and Bao Sputtering Yields by Ne+ or Xe+ Ions, J Phys D Appl Phys, 2011, 44(25), p 255203 (1–5).

    Article  Google Scholar 

  67. J.A. van Orman and K.L. Crispin, Diffusion in Oxides, Rev. Mineral. Geochem., 2010, 72(1), p 757–825.

    Article  Google Scholar 

Download references

Acknowledgments

Dr A. Christogerou acknowledges the support of this work by the project “INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management” (MIS 5002495) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Nikolopoulos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzimichail, R., Christogerou, A., Bebelis, S. et al. Surface and Grain Boundary Energies as well as Surface Mass Transport in Polycrystalline MgO. J. of Materi Eng and Perform 30, 9130–9139 (2021). https://doi.org/10.1007/s11665-021-06120-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06120-5

Keywords

Navigation