Skip to main content

Superelastic Behavior of Additively Manufactured Nylon-12 Lattice Structures

Abstract

Revolutionary advances have been observed in lattice structure fabrication, which is a unique capability of additive manufacturing. In particular, lattice structures have been employed to regulate the mechanical properties of metals and polymers. In this work, the true impact of lattice structures on superelastic behavior was experimentally investigated. Finite element analysis was also used to evaluate the stress and displacement of lattice structures. Nylon-12 is an elastic polymer that does not typically demonstrate superelastic behavior. The HP Multi Jet Fusion method was used to fabricate three different lattice structures: a soft box (BSL), X shape, and rhombic dodecahedron (RDL). Mechanical tests showed that BSL was able to recover 30.697% of the strain in the first compression cycle and 66.233% in the fifth compression cycle, which is impressive for a non-superelastic material. The reduced possibility of yield failure, lower Young’s modulus, and low stiffness of SBL increased its strength. SBL displayed better superelastic behavior with the lowest Young’s modulus among the three lattice structures. This study not only designed and tested lattice structures but also compared the superelastic performances of selected lattice structures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. F.N. Habib, M. Nikzad, S.H. Masood and A.B.M. Saifullah, Design and Development of Scaffolds for Tissue Engineering Using Three-Dimensional Printing for Bio-Based Applications, 3D Print. Addit. Manuf., 2016, 3(2), p 119–127. https://doi.org/10.1089/3dp.2015.0014

    Article  Google Scholar 

  2. X.Z. Zhang, M. Leary, H.P. Tang, T. Song and M. Qian, Selective Electron Beam Manufactured Ti-6Al-4V Lattice Structures for Orthopedic Implant Applications: Current Status and Outstanding Challenges, Curr. Opin. Solid State Mater. Sci., 2018 https://doi.org/10.1016/j.cossms.2018.05.002

    Article  Google Scholar 

  3. M.T. Andani, N. ShayestehMoghaddam, C. Haberland, D. Dean, M.J. Miller and M. Elahinia, Metals for Bone Implants. Part 1. Powder Metallurgy and Implant Rendering, Acta Biomater., 2014, 10(10), p 4058–4070. https://doi.org/10.1016/j.actbio.2014.06.025

    Article  CAS  Google Scholar 

  4. M.B. Bezuidenhout, D.M. Dimitrov, A.D. Van Staden, G.A. Oosthuizen and L.M.T. Dicks, Titanium-Based Hip Stems with Drug Delivery Functionality through Additive Manufacturing, Biomed. Res. Int., 2015, 2015, p 1–11. https://doi.org/10.1155/2015/134093

    Article  CAS  Google Scholar 

  5. T. Habijan et al., The Biocompatibility of Dense and Porous Nickel-Titanium Produced by Selective Laser Melting, Mater. Sci. Eng. C, 2013, 33(1), p 419–426. https://doi.org/10.1016/j.msec.2012.09.008

    Article  CAS  Google Scholar 

  6. P. Szymczyk-Ziółkowska, M.B. Łabowska, J. Detyna, I. Michalak and P. Gruber, A Review of Fabrication Polymer Scaffolds for Biomedical Applications using Additive Manufacturing Techniques, Biocybern. Biomed. Eng., 2020, 40(2), p 624–638. https://doi.org/10.1016/j.bbe.2020.01.015

    Article  Google Scholar 

  7. I. Zein, D.W. Hutmacher, K.C. Tan and S.H. Teoh, Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications, Biomaterials, 2002, 23(4), p 1169–1185. https://doi.org/10.1016/s0142-9612(01)00232-0

    Article  CAS  Google Scholar 

  8. M. Mele, G. Campana and G.L. Monti, Modelling of the Capillarity Effect in Multi Jet Fusion Technology, Addit. Manuf., 2019, 30, p 100879. https://doi.org/10.1016/j.addma.2019.100879

    Article  Google Scholar 

  9. M. Mele, G. Campana and G.L. Monti, A Decision Method to Improve the Sustainability of Post Processing in Multi Jet Fusion Additive Manufacturing, Procedia Manuf., 2020, 43, p 2–9. https://doi.org/10.1016/j.promfg.2020.02.101

    Article  Google Scholar 

  10. M. Galati, F. Calignano, S. Defanti and L. Denti, Disclosing the Build-Up Mechanisms of Multi Jet Fusion: Experimental Insight Into the Characteristics of Starting Materials and Finished Parts, J. Manuf. Process., 2020, 57, p 244–253. https://doi.org/10.1016/j.jmapro.2020.06.029

    Article  Google Scholar 

  11. H.J. O’Connor and D.P. Dowling, Comparison Between the Properties of Polyamide 12 and Glass Bead Filled Polyamide 12 using the Multi Jet Fusion Printing Process, Additive Manuf., 2020, 31, p 100961. https://doi.org/10.1016/j.addma.2019.100961

    Article  CAS  Google Scholar 

  12. F.N. Habib, P. Iovenitti, S.H. Masood and M. Nikzad, Fabrication of Polymeric Lattice Structures for Optimum Energy Absorption using Multi Jet Fusion Technology, Mater. Des., 2018, 155, p 86–98. https://doi.org/10.1016/j.matdes.2018.05.059

    Article  CAS  Google Scholar 

  13. A. Kantaros, N. Chatzidai and D. Karalekas, 3D Printing-Assisted Design of Scaffold Structures, Int. J. Adv. Manuf. Technol., 2016, 82(1–4), p 559–571. https://doi.org/10.1007/s00170-015-7386-6

    Article  Google Scholar 

  14. T. Serra, M. Ortiz-Hernandez, E. Engel, J.A. Planell and M. Navarro, Relevance of PEG in PLA-Based Blends for Tissue Engineering 3D-Printed Scaffolds, Mater. Sci. Eng. C, 2014, 38, p 55–62. https://doi.org/10.1016/j.msec.2014.01.003

    Article  CAS  Google Scholar 

  15. S. Ahmadi et al., Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties, Materials, 2015, 8(4), p 1871–1896. https://doi.org/10.3390/ma8041871

    Article  CAS  Google Scholar 

  16. J. Brennan-Craddock, D. Brackett, R. Wildman, and R. Hague, The design of impact absorbing structures for additive manufacture, in Journal of Physics: Conference Series, vol 382 (IOP Publishing, 2021) p. 012042.

  17. R. Gautam, S. Idapalapati and S. Feih, Printing and Characterisation of Kagome Lattice Structures by Fused Deposition Modelling, Mater. Des., 2018, 137, p 266–275. https://doi.org/10.1016/j.matdes.2017.10.022

    Article  CAS  Google Scholar 

  18. H. O’Connor, A. Dickson and D. Dowling, Evaluation of the Mechanical Performance of Polymer Parts Fabricated using a Production Scale Multi Jet Fusion Printing Process, Addit. Manuf., 2018, 22, p 05/01. https://doi.org/10.1016/j.addma.2018.05.035

    Article  CAS  Google Scholar 

  19. S. Amin Yavari et al., Relationship between Unit Cell Type and Porosity and the Fatigue Behavior of Selective Laser Melted Meta-Biomaterials, J. Mech. Behav. Biomed. Mater., 2015, 43, p 91–100. https://doi.org/10.1016/j.jmbbm.2014.12.015

    Article  CAS  Google Scholar 

  20. S. Ruesenberg and H. J. Schmid, Advanced Characterization Method of Nylon 12 Materials for Application in Laser Sinter Processing. (American Institute of Physics, 2014). doi:https://doi.org/10.1063/1.4873877

  21. F.N. Habib, P. Iovenitti, S.H. Masood and M. Nikzad, In-Plane Energy Absorption Evaluation of 3D Printed Polymeric Honeycombs, Virtual Phys. Prototyp., 2017, 12(2), p 117–131. https://doi.org/10.1080/17452759.2017.1291354

    Article  Google Scholar 

  22. A. Bagheri, M.J. Mahtabi and N. Shamsaei, Fatigue Behavior and Cyclic Deformation of Additive Manufactured NiTi, J. Mater. Process. Technol., 2018, 252, p 440–453. https://doi.org/10.1016/j.jmatprotec.2017.10.006

    Article  CAS  Google Scholar 

  23. M.J. Mahtabi, N. Shamsaei and M.R. Mitchell, Fatigue of Nitinol: The State-of-the-Art and Ongoing Challenges, J. Mech. Behav. Biomed. Mater., 2015, 50, p 228–254. https://doi.org/10.1016/j.jmbbm.2015.06.010

    Article  CAS  Google Scholar 

  24. O. Karakoc, C. Hayrettin, D. Canadinc and I. Karaman, Role of Applied Stress Level on the Actuation Fatigue Behavior of NiTiHf High Temperature Shape Memory Alloys, Acta Mater., 2018, 153, p 156–168. https://doi.org/10.1016/j.actamat.2018.04.021

    Article  CAS  Google Scholar 

  25. H.O. Tugrul, H.H. Saygili and B. Kockar, Influence of Limiting the Actuation Strain on the Functional Fatigue Behavior of Ni50.3Ti29.7Hf20 High Temperature Shape Memory Alloy, J. Intell. Mater. Syst. Struct., 2020 https://doi.org/10.1177/1045389x20953610

    Article  Google Scholar 

  26. I. Maskery et al., Insights Into the Mechanical Properties of Several Triply Periodic Minimal Surface Lattice Structures Made by Polymer Additive Manufacturing, Polymer, 2018, 152, p 62–71. https://doi.org/10.1016/j.polymer.2017.11.049

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Ahmed Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kankanamge, U.M.H.U., Mohamed, O.A. & Xu, W. Superelastic Behavior of Additively Manufactured Nylon-12 Lattice Structures. J. of Materi Eng and Perform 30, 9352–9358 (2021). https://doi.org/10.1007/s11665-021-06086-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06086-4

Keywords