Skip to main content

Advertisement

Log in

Production of Bioactive Various Lattices as an Artificial Bone Tissue by Digital Light Processing 3D Printing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study aims to find which lattice type and which ingredient is the best for the bone lattice for future grafting operations. Four types of lattice parts with micro and high porosity were designed to resemble the human bone structure and reach its light-weight and high surface area properties. Hydroxyapatite (HA) and tricalcium phosphate (TCP) were used in the photopolymer resin mixture for (Digital Light Processing) DLP 3D printing to give high bioactivity capability to the parts. In conclusion, microporosity HA- and TCP-doped parts were printed successfully with the DLP technique. Bioactivity tests were carried out with parts that were soaked in simulated body fluid (SBF). There is no significant weight difference in lattice parts in the time. Four weeks are sufficient time for the test. End of 2 weeks, calcium phosphate particles with around a diameter of 50-75 µm, and end of 4 weeks, calcium phosphate particles with around a diameter of 80-225 µm were observed. Apatite precipitation areas were grown on the surface in time. SEM and XRD results indicate that HA-doped and TCP-doped specimens are bioactive. A more mass increase was observed in the HA-doped specimen compared to the TCP-doped specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.N. Chia and B.M. Wu, Recent Advances in 3D Printing of Biomaterials, J. Biol. Eng, 2015, 9(1), p 1–15.

    Article  CAS  Google Scholar 

  2. S. Derakhshanfar, R. Mbeleck, K. Xu, X. Zhang, W. Zhong and M. Xing, 3D Bioprinting for biomedical Devices and Tissue Engineering: A Review of Recent Trends and Advances, Bioact. Mater., 2018, 3(2), p 144–156. https://doi.org/10.1016/j.bioactmat.2017.11.008

    Article  Google Scholar 

  3. L.C. Hwa, S. Rajoo, A.M. Noor, N. Ahmad and M.B. Uday, Recent Advances in 3D Printing of Porous Ceramics: A Review, Curr. Opin. Solid State Mater. Sci., 2017, 21(6), p 323–347. https://doi.org/10.1016/j.cossms.2017.08.002

    Article  CAS  Google Scholar 

  4. H. Jodati, B. Yılmaz and Z. Evis, A Review of Bioceramic Porous Scaffolds for Hard Tissue Applications: Effects of Structural Features, Ceram. Int., 2020, 46(10), p 15725.

    Article  CAS  Google Scholar 

  5. N.H. Hart, S. Nimphius, T. Rantalainen, A. Ireland, A. Siafarikas and R.U. Newton, Mechanical Basis of Bone Strength: Influence of Bone Material, Bone Structure and Muscle Action, J Musculoskelet Neuronal Interact, 2017, 17(3), p 114–139.

    CAS  Google Scholar 

  6. J.D. Currey, The Structure and Mechanics of Bone, J Mater Sci, 2012, 47(1), p 41–54. https://doi.org/10.1007/s10853-011-5914-9

    Article  CAS  Google Scholar 

  7. M. Guvendiren, J. Molde, R.M.D. Soares and J. Kohn, Designing Biomaterials for 3D Printing, ACS Biomater Sci. Eng., 2016, 2(10), p 1679–1693.

    Article  CAS  Google Scholar 

  8. A. Butscher, M. Bohner, S. Hofmann, L. Gauckler and R. Müller, Structural and Material Approaches to Bone Tissue Engineering in Powder-based Three-dimensional Printing, Acta Biomater, 2011, 7(3), p 907–920. https://doi.org/10.1016/j.actbio.2010.09.039

    Article  CAS  Google Scholar 

  9. L. Yuan, S. Ding and C. Wen, Additive Manufacturing Technology for Porous Metal Implant Applications and Triple Minimal Surface Structures: A Review, Bioact. Mater., 2019, 4(1), p 56–70. https://doi.org/10.1016/j.bioactmat.2018.12.003

    Article  Google Scholar 

  10. D. Liu, W. Nie, D. Li, W. Wang, L. Zheng and J. Zhang, 3D Printed PCL / SrHA Sca Ff Old for Enhanced Bone Regeneration, Chem. Eng., 2018, 362, p 269–279.

    Article  Google Scholar 

  11. R.K. Kankala, X.M. Xu, C.G. Liu, A.Z. Chen and S. Bin Wang, 3D-Printing of Microfibrous Porous Scaffolds Based on Hybrid Approaches for Bone Tissue Engineering, Polym. (Basel), 2018, 10(7), p 1–17.

    Google Scholar 

  12. J. Schmid, S. Schwarz, M. Fischer, S. Sudhop, H. Clausen-Schaumann, M. Schieker and R. Huber, A Laser-Cutting-Based Manufacturing Process for the Generation of Three-Dimensional Scaffolds for Tissue Engineering Using Polycaprolactone/Hydroxyapatite Composite Polymer, J. Tissue Eng., 2019 https://doi.org/10.1177/2041731419859157

    Article  Google Scholar 

  13. S. Qiao, D. Wu, Z. Li, Y. Zhu, F. Zhan, H. Lai and Y. Gu, The Combination of Multi-Functional Ingredients-Loaded Hydrogels and Three-Dimensional Printed Porous Titanium Alloys for Infective Bone Defect Treatment, J. Tissue Eng., 2020 https://doi.org/10.1177/2041731420965797

    Article  Google Scholar 

  14. A. Diez-Escudero, H. Harlin, P. Isaksson and C. Persson, Porous Polylactic Acid Scaffolds for Bone Regeneration: A Study of Additively Manufactured Triply Periodic Minimal Surfaces and Their Osteogenic Potential, J Tissue Eng, 2020 https://doi.org/10.1177/2041731420956541

    Article  Google Scholar 

  15. S. Bose, S. Vahabzadeh and A. Bandyopadhyay, Bone Tissue Engineering using 3D Printing, Mater. Today, 2013, 16(12), p 496–504. https://doi.org/10.1016/j.mattod.2013.11.017

    Article  CAS  Google Scholar 

  16. Z. Chen, Z. Li, J. Li, C.C. Liu, C. Lao, Y. Fu, C.C. Liu, Y. Li, P. Wang and Y. He, 3D Printing of Ceramics: A Review, J Eur Ceram. Soc, 2019, 39(4), p 661–687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

    Article  CAS  Google Scholar 

  17. J. Zhang, D. Huang, S. Liu, X. Dong, Y. Li, H. Zhang, Z. Yang, Q. Su, W. Huang, W. Zheng and W. Zhou, Zirconia Toughened Hydroxyapatite Biocomposite Formed by a DLP 3D Printing Process for Potential Bone Tissue Engineering, Mater. Sci. Eng. C, 2019, 105, p 110054. https://doi.org/10.1016/j.msec.2019.110054

    Article  CAS  Google Scholar 

  18. O. Guillaume, M.A. Geven, C.M. Sprecher, V.A. Stadelmann, D.W. Grijpma, T.T. Tang, L. Qin, Y. Lai, M. Alini, J.D. de Bruijn, H. Yuan, R.G. Richards and D. Eglin, Surface-enrichment with Hydroxyapatite Nanoparticles in Stereolithography-fabricated Composite Polymer Scaffolds Promotes Bone Repair, Acta Biomater, 2017, 54, p 386–398. https://doi.org/10.1016/j.actbio.2017.03.006

    Article  CAS  Google Scholar 

  19. X. Yin, N. Travitzky and P. Greil, Three-Dimensional Printing of Nanolaminated Ti3AlC2 Toughened TiAl3–Al2O3 Composites, J. Am. Ceram Soc., 2007, 90(7), p 2128–2134. https://doi.org/10.1111/j.1551-2916.2007.01668.x

    Article  CAS  Google Scholar 

  20. Z. Chen, J. Li, C. Liu, Y. Liu, J. Zhu and C. Lao, Preparation of High Solid Loading and Low Viscosity Ceramic Slurries for Photopolymerization-based 3D Printing, Ceram. Int., 2019, 45(9), p 11549–11557. https://doi.org/10.1016/j.ceramint.2019.03.024

    Article  CAS  Google Scholar 

  21. S.C. Cox, J.A. Thornby, G.J. Gibbons, M.A. Williams and K.K. Mallick, 3D Printing of Porous Hydroxyapatite Scaffolds Intended for use in Bone Tissue Engineering Applications, Mater. Sci. Eng, 2015, 47, p 237–247. https://doi.org/10.1016/j.msec.2014.11.024

    Article  CAS  Google Scholar 

  22. R. Melcher, N. Travitzky, C. Zollfrank and P. Greil, 3D Printing of Al2O3/Cu–O Interpenetrating Phase Composite, J. Mater. Sci., 2011, 46(5), p 1203–1210. https://doi.org/10.1007/s10853-010-4896-3

    Article  CAS  Google Scholar 

  23. B. Nan, X. Yin, L. Zhang and L. Cheng, Three-Dimensional Printing of Ti3SiC2-Based Ceramics, J. Am. Ceram. Soc., 2011, 94(4), p 969–972. https://doi.org/10.1111/j.1551-2916.2010.04257.x

    Article  CAS  Google Scholar 

  24. K. Zhang, C. Xie, G. Wang, R. He, G. Ding, M. Wang, D. Dai and D. Fang, High Solid Loading, Low Viscosity Photosensitive Al2O3 Slurry for Stereolithography Based Additive Manufacturing, Ceram. Int, 2019, 45(1), p 203–208. https://doi.org/10.1016/j.ceramint.2018.09.152

    Article  CAS  Google Scholar 

  25. J. Schmidt, H. Elsayed, E. Bernardo and P. Colombo, Digital Light Processing of Wollastonite-Diopside Glass-Ceramic Complex Structures, J. Eur. Ceram. Soc., 2018, 38(13), p 4580–4584. https://doi.org/10.1016/j.jeurceramsoc.2018.06.004

    Article  CAS  Google Scholar 

  26. R.J. Huang, Q.G. Jiang, H.D. Wu, Y.H. Li, W.Y. Liu, X.X. Lu and S.H. Wu, Fabrication of Complex Shaped Ceramic Parts with Surface-Oxidized Si 3 N 4 Powder Via Digital Light Processing Based Stereolithography Method, Ceram. Int., 2019, 45(4), p 5158–5162. https://doi.org/10.1016/j.ceramint.2018.11.116

    Article  CAS  Google Scholar 

  27. S.L. Sherman, O. Kadioglu, G.F. Currier, J.P. Kierl and J. Li, Accuracy of Digital Light Processing Printing of 3-dimensional Dental Models, Am. J. Orthod. Dentofac, 2020, 157(3), p 422–428. https://doi.org/10.1016/j.ajodo.2019.10.012

    Article  Google Scholar 

  28. T. Kokubo and H. Takadama, How Useful Is SBF in Predicting in Vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907–2915.

    Article  CAS  Google Scholar 

  29. M.S. Zafar, I. Farooq, M. Awais, S. Najeeb, Z. Khurshid and S. Zohaib, Bioactive Surface Coatings for Enhancing Osseointegration of Dental Implants, Biomed. Ther. Clin. Appl. Bioact. Glas., 2019 https://doi.org/10.1016/B978-0-08-102196-5.00011-2

    Article  Google Scholar 

  30. J. Wilson, Metallic Biomaterials: State of the Art and New Challenges, Fundam. Biomater. Met., 2018 https://doi.org/10.1016/B978-0-08-102205-4.00001-5

    Article  Google Scholar 

  31. S.V. Dorozhkin, Calcium Orthophosphates in Nature, Biology and Medicine, Materials, 2009, 2, p 399–498.

    Article  CAS  Google Scholar 

  32. L. Barnes, I.R. Cooper, I.M. Mehdawi and A. Young, Antibacterial Composite Restorative Materials for Dental Applications, Biomater Med Device –Assoc. Infect, 2015 https://doi.org/10.1533/9780857097224.2.199

    Article  Google Scholar 

  33. H. Yuan, D. Barbieri, X. Luo, C.A. Van Blitterswijk, ve J.D. De Bruijn, Calcium phosphates and bone induction, Comprehensive Biomaterials II, Elsevier, 2017, s 333–349.

  34. James Eric N., Hanna Craig, ve L.S. Nair, Chapter 16 - Nanobiomaterials for Tissue Engineering Applications, A. Vishwakarma, P. Sharpe, S. Shi, ve M.B.T.-S.C.B. and T.E. in D.S. Ramalingam, Ed., (Boston), Academic Press, 2015, s 221–234, doi:https://doi.org/10.1016/B978-0-12-397157-9.00018-7.

  35. T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque and M. Brandt, SLM Lattice Structures: properties, Performance, Applications and Challenges, Mater Des, 2019, 183, p 108137. https://doi.org/10.1016/j.matdes.2019.108137

    Article  Google Scholar 

  36. A. Zargarian, M. Esfahanian, J. Kadkhodapour, S. Ziaei-Rad and D. Zamani, On the Fatigue Behavior of Additive Manufactured Lattice Structures, Theor. Appl. Fract. Mech., 2019, 100, p 225–232.

    Article  Google Scholar 

  37. Z. Liu, H. Liang, T. Shi, D. Xie, R. Chen, X. Han, L. Shen, C. Wang and Z. Tian, Additive Manufacturing of Hydroxyapatite Bone Scaffolds Via Digital Light Processing and in vitro Compatibility, Ceram. Int., 2019, 45(8), p 11079–11086. https://doi.org/10.1016/j.ceramint.2019.02.195

    Article  CAS  Google Scholar 

  38. H. Shao, J. He, T. Lin, Z. Zhang, Y. Zhang and S. Liu, 3D Gel-printing of Hydroxyapatite Scaffold for Bone Tissue Engineering, Ceram. Int., 2019, 45(1), p 1163–1170. https://doi.org/10.1016/J.CERAMINT.2018.09.300

    Article  CAS  Google Scholar 

  39. O. Santoliquido, P. Colombo and A. Ortona, Additive Manufacturing of Ceramic Components by Digital Light Processing: A Comparison Between the “Bottom-up” and the “Top-down” Approaches, J. Eur. Ceram. Soc., 2019, 39(6), p 2140–2148. https://doi.org/10.1016/j.jeurceramsoc.2019.01.044

    Article  CAS  Google Scholar 

  40. D. Kang, S. Park, Y. Son, S. Yeon, S.H. Kim and I. Kim, Multi-lattice Inner Structures for High-strength and Light-weight in Metal Selective Laser Melting Process, Mater. Des., 2019, 175, p 107786. https://doi.org/10.1016/j.matdes.2019.107786

    Article  Google Scholar 

  41. J. Schmidt and P. Colombo, Digital Light Processing of Ceramic Components from Polysiloxanes, J. Eur. Ceram. Soc., 2018, 38(1), p 57–66. https://doi.org/10.1016/j.jeurceramsoc.2017.07.033

    Article  CAS  Google Scholar 

  42. J. Schmidt, A.A. Altun, M. Schwentenwein and P. Colombo, Complex Mullite Structures Fabricated via Digital Light Processing of a Preceramic Polysiloxane with Active Alumina Fillers, J. Eur. Ceram. Soc., 2019, 39(4), p 1336–1343. https://doi.org/10.1016/j.jeurceramsoc.2018.11.038

    Article  CAS  Google Scholar 

  43. S. Gómez, M.D. Vlad, J. López and E. Fernández, Design and Properties of 3D Scaffolds for Bone Tissue Engineering, Acta Biomater., 2016, 42, p 341–350.

    Article  Google Scholar 

  44. N. Abbasi, S. Hamlet, R.M. Love and N.-T. Nguyen, Porous Scaffolds for Bone Regeneration, J. Sci. Adv. Mater Devices, 2020, 5(1), p 1–9. https://doi.org/10.1016/j.jsamd.2020.01.007

    Article  Google Scholar 

  45. F.P.W. Melchels, K. Bertoldi, R. Gabbrielli, A.H. Velders, J. Feijen and D.W. Grijpma, Mathematically Defined Tissue Engineering Scaffold Architectures Prepared by Stereolithography, Biomaterials, 2010, 31(27), p 6909–6916. https://doi.org/10.1016/j.biomaterials.2010.05.068

    Article  CAS  Google Scholar 

  46. H.A. Zaharin, A.M.A. Rani, F.I. Azam, T.L. Ginta, N. Sallih, A. Ahmad, N.A. Yunus and T.Z.A. Zulkifli, Effect of Unit Cell Type and Pore Size on Porosity and Mechanical Behavior of Additively Manufactured Ti6Al4V Scaffolds, Materials (Basel), 2018, 11(12), p 2402.

    Article  CAS  Google Scholar 

  47. D. Ali and S. Sen, Finite Element Analysis of Mechanical Behavior, Permeability and Fluid Induced Wall Shear Stress of High Porosity Scaffolds with Gyroid and Lattice-based Architectures, J. Mech. Behav. Biomed. Mater., 2017, 75, p 262–270. https://doi.org/10.1016/j.jmbbm.2017.07.035

    Article  CAS  Google Scholar 

  48. C. Yan, L. Hao, A. Hussein and D. Raymont, Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting, Int. J. Mach. Tools Manuf., 2012, 62, p 32–38. https://doi.org/10.1016/j.ijmachtools.2012.06.002

    Article  Google Scholar 

  49. V.V. Kostov-Kytin, E. Dyulgerova, R. Ilieva and V. Petkova, Powder X-ray Diffraction Studies of Hydroxyapatite and β-TCP Mixtures Processed by High Energy Dry Milling, Ceram. Int., 2018, 44(7), p 8664–8671. https://doi.org/10.1016/j.ceramint.2018.02.094

    Article  CAS  Google Scholar 

  50. C. Drouet, Apatite Formation: Why It May Not Work as Planned, and How to Conclusively Identify Apatite Compounds, Biomed Res Int., 2013, 2013, p 1–12.

    Article  Google Scholar 

  51. T. Kokubo, F. Miyaji, H.-M. Kim and T. Nakamura, Spontaneous Formation of Bonelike Apatite Layer on Chemically Treated Titanium Metals, J. Am. Ceram. Soc., 1996, 79(4), p 1127–1129. https://doi.org/10.1111/j.1151-2916.1996.tb08561.x

    Article  CAS  Google Scholar 

  52. S. Sarig and F. Kahana, Rapid Formation of Nanocrystalline Apatite, J. Cryst. Growth, 2002, 237–239, p 55–59.

    Article  Google Scholar 

  53. X.B. Chen, Y.C. Li, P.D. Hodgson and C. Wen, The Importance of Particle Size in Porous Titanium and Nonporous Counterparts for Surface Energy and Its Impact on Apatite Formation, Acta Biomater., 2009, 5(6), p 2290–2302.

    Article  CAS  Google Scholar 

  54. L. Jonášová, F.A. Müller, A. Helebrant, J. Strnad and P. Greil, Biomimetic Apatite Formation on Chemically Treated Titanium, Biomaterials, 2004, 25(7–8), p 1187–1194.

    Article  Google Scholar 

Download references

Acknowledgment

This study is a part of a Master’s Thesis carried out by Muhammed Enes DOKUZ at Necmettin Erbakan University, Institute of Science. Mesut UYANER and Mustafa AYDIN are the advisors of this thesis. This research was financially supported by Necmettin Erbakan University Scientific Research Projects Coordinatorship (Grant no. 191319013). Also, we wish to thank Kutahya Dumlupınar University Advanced Research Center (ILTEM) for facilitating laboratories, devices, and equipment. Marmara University Metallurgy and Materials Engineering Department member Dr. Oğuzhan Gündüz provided us TCP powder used in this study. Çanakkale Onsekiz Mart University Bioengineering Department member Dr. Özgür Özay and Ph.D. candidate Alper Önder gave support to prepare SBF. The authors especially thank them for their valuable contribution to their study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enes Dokuz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dokuz, M.E., Aydın, M. & Uyaner, M. Production of Bioactive Various Lattices as an Artificial Bone Tissue by Digital Light Processing 3D Printing. J. of Materi Eng and Perform 30, 6938–6948 (2021). https://doi.org/10.1007/s11665-021-06067-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06067-7

Keywords

Navigation