Skip to main content
Log in

Low-Cycle Fatigue Behavior of Friction Stir-Welded Copper Joints

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Investigation of the fatigue response of friction stir-welded (FSWed) joints is especially important in the design and manufacturing of components with exposure to cyclic loading. In this study, cyclic response of FSWed pure copper joints is investigated in the low-cycle fatigue regime. Microstructural characterizations revealed that FSW introduced a severely deformed microstructure in the nugget zone (NZ). Fatigue response was determined at a strain ratio of 0.1 by varying the total strain amplitude from 0.1 to 0.6%. Cyclic softening was observed for the low strain amplitude of 0.1%, whereas hardening was detected at higher strain amplitudes. The hysteresis loops demonstrated symmetricity along with noticeable linear behavior after the reversals. Typical fractures occurred in the heat affected zone (HAZ) rather than the NZ or the base metal due to grain coarsening of the HAZ. Improved cyclic properties of the NZ along with stable behavior up to 1000 cycles at a total strain amplitude of 0.3% were attributed to its fine and homogeneous microstructure. Moreover, fracture surface analysis demonstrated a ductile behavior represented by dimples in the sample strained at 0.1% in contrast with a brittle fracture surface of the sample fatigued at 0.5% strain amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.-W. Lin, H.-C. Chang, and M.-H. Wu, Comparison of Mechanical Properties of Pure Copper Welded Using Friction Stir Welding and Tungsten Inert Gas Welding, J. Manuf. Process., 2014, 16(2), p 296–304

    Article  Google Scholar 

  2. H. Khodaverdizadeh, A. Heidarzadeh, and T. Saeid, Effect of Tool Pin Profile on Microstructure and Mechanical Properties of Friction Stir Welded Pure Copper Joints, Mater. Des., 2013, 45, p 265–270

    Article  CAS  Google Scholar 

  3. W. Oates, Welding Handbook-Materials and Applications-Part 1, Vol 3 AWS, Miami, 1996.

    Google Scholar 

  4. S.A.A. Akbari Mousavi and S.T. Niknejad, An Investigation on Microstructure and Mechanical Properties of Nd:YAG Laser Beam Weld of Copper Beryllium Alloy, Metall. Mater. Trans. A, 2009, 40(6), p 1469–1478

    Article  CAS  Google Scholar 

  5. B. Venu, I. BhavyaSwathi, L.S. Raju, G. Santhanam, A Review on Friction Stir Welding of Various Metals and Its Variables, Mater. Today: Proc., 2019, 18, p 298–302

    Google Scholar 

  6. X. Meng, Y. Huang, J. Cao, J. Shen, and J.F. dos Santos, Recent Progress on Control Strategies for İnherent İssues in Friction Stir Welding, Prog. Mater. Sci., 2021, 115, p 100706

    Article  CAS  Google Scholar 

  7. I.J. Ibrahim and G.G. Yapici, Application of a Novel Friction Stir Spot Welding Process on Dissimilar Aluminum Joints, J. Manuf. Process., 2018, 35, p 282–288

    Article  Google Scholar 

  8. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R. Rep., 2005, 50(1–2), p 1–78

    Article  CAS  Google Scholar 

  9. A. Rashidi, A. Mostafapour, V. Rezazadeh, and S. Salahi, Channel Formation in Modified Friction Stir Channeling, Appl. Mech. Mater., 2013, 302, p 371–376

    Article  CAS  Google Scholar 

  10. A. Rashidi, A. Mostafapour, V. Rezazadeh, and S. Salahi, Modified Friction Stir Channeling: A Novel Technique for Fabrication of Friction Stir Channel, Appl. Mech. Mater., 2013, 302, p 365–370

    Article  CAS  Google Scholar 

  11. A. Heidarzadeh, A. Radi, and G.G. Yapici, Formation of Nano-Sized Compounds During Friction Stir Welding of Cu-Zn Alloys: Effect of Tool Composition, J. Market. Res., 2020, 9(6), p 15874–15879

    CAS  Google Scholar 

  12. K. Chen, W. Gan, K. Okamoto, K. Chung, and R. Wagoner, The Mechanism of Grain Coarsening in Friction-Stir-Welded AA5083 after Heat Treatment, Metall. Mater. Trans. A., 2011, 42(2), p 488–507

    Article  CAS  Google Scholar 

  13. E. Cerri and P. Leo, Warm and Room Temperature Deformation of Friction Stir Welded Thin Aluminium Sheets, Mater. Des., 2010, 31(3), p 1392–1402

    Article  CAS  Google Scholar 

  14. X. Cao and M. Jahazi, Effect of Welding Speed on the Quality of Friction Stir Welded Butt Joints of A Magnesium Alloy, Mater. Des., 2009, 30(6), p 2033–2042

    Article  CAS  Google Scholar 

  15. K. Nakata, Friction Stir Welding of Copper and Copper Alloys, Weld. Int., 2005, 19(12), p 929–933

    Article  Google Scholar 

  16. R. Abrahams, J. Mikhail, and P. Fasihi, Effect of Friction Stir Process Parameters on the Mechanical Properties of 5005-H34 and 7075-T651 Aluminium Alloys, Mater. Sci. Eng. A, 2019, 751, p 363–373

    Article  CAS  Google Scholar 

  17. A.H. Baghdadi, A. Rajabi, N.F.M. Selamat, Z. Sajuri, and M.Z. Omar, Effect of Post-Weld Heat Treatment on the Mechanical Behavior and Dislocation Density of Friction Stir Welded Al6061, Mater. Sci. Eng. A, 2019, 754, p 728–734

    Article  CAS  Google Scholar 

  18. A. Hosseinzadeh and G.G. Yapici, High Temperature Characteristics of Al2024/SiC Metal Matrix Composite Fabricated by Friction Stir Processing, Mater. Sci. Eng. A, 2018, 731, p 487–494

    Article  CAS  Google Scholar 

  19. T. Sakthivel, and J. Mukhopadhyay, Microstructure and Mechanical Properties of Friction Stir Welded Copper, J. Mater. Sci., 2007, 42(19), p 8126–8129

    Article  CAS  Google Scholar 

  20. A. Abdollah-Zadeh, T. Saeid, and B. Sazgari, Microstructural and Mechanical Properties of Friction Stir Welded Aluminum/Copper Lap Joints, J. Alloy. Compd., 2008, 460(1–2), p 535–538

    Article  CAS  Google Scholar 

  21. R. Nandan, T. DebRoy, and H. Bhadeshia, Recent advances in Friction-Stir Welding–Process, Weldment Structure and Properties, Prog. Mater. Sci., 2008, 53(6), p 980–1023

    Article  CAS  Google Scholar 

  22. R. Rzaev, A. Chularis, V. Smirnov, and L. Semyenova, The Influence of the Friction Stir Welding Parameters on the Formation of Welded Joint of Aluminum and Copper Alloys, Mater. Today Proc., 2019, 11, p 534–542

    Article  CAS  Google Scholar 

  23. S. Salahi, V. Rezazadeh, A. Iranizad, A. Hosseinzadeh, and A. Safari, Microstructure and Mechanical Properties of Friction Stir Welded Annealed Pure Copper Joints, Advanced Materials Research, Trans Tech Publ, Stafa, 2013, p 346–351

    Google Scholar 

  24. G.M. Xie, Z.Y. Ma, and L. Geng, Development of a Fine-Grained Microstructure and the Properties of a Nugget Zone in Friction Stir Welded Pure Copper, Scr Mater., 2007, 57(2), p 73–76

    Article  CAS  Google Scholar 

  25. H.J. Liu, J.J. Shen, Y.X. Huang, L.Y. Kuang, C. Liu, and C. Li, Effect of Tool Rotation Rate on Microstructure and Mechanical Properties of Friction Stir Welded Copper, Sci. Technol. Weld. Join., 2009, 14(6), p 577–583

    Article  CAS  Google Scholar 

  26. A. Heidarzadeh, T. Saeid, H. Khodaverdizadeh, A. Mahmoudi, and E. Nazari, Establishing a Mathematical Model to Predict the Tensile Strength of Friction Stir Welded Pure Copper Joints, Metall. Mater. Trans. B, 2013, 44(1), p 175–183

    Article  CAS  Google Scholar 

  27. D. Ni, D. Chen, B. Xiao, D. Wang, and Z. Ma, Residual Stresses and High Cycle Fatigue Properties of Friction Stir Welded SiCp/AA2009 Composites, Int. J. Fatigue, 2013, 55, p 64–73

    Article  CAS  Google Scholar 

  28. D. Hrishikesh, D. Chakraborty, and T.K. Pal, High-Cycle Fatigue Behavior of Friction Stir Butt Welded 6061 Aluminium Alloy, Trans. Nonferrous Met. Soc. China, 2014, 24(3), p 648–656

    Article  CAS  Google Scholar 

  29. H. Maier, P. Gabor, and I. Karaman, Cyclic Stress–Strain Response and low-Cycle Fatigue Damage in Ultrafine Grained Copper, Mater. Sci. Eng. A, 2005, 410, p 457–461

    Article  CAS  Google Scholar 

  30. D. Ni, D. Chen, J. Yang, and Z. Ma, Low Cycle Fatigue Properties of Friction Stir Welded Joints of a Semi-Solid Processed AZ91D Magnesium Alloy, Mater. Des., 2014, 56, p 1–8

    Article  CAS  Google Scholar 

  31. Z. Zhang, Z. Wang, and Z. Sun, Evolution and Microstructural Characteristics of Deformation Bands in Fatigued Copper Single Crystals, Acta Mater., 2001, 49(15), p 2875–2886

    Article  CAS  Google Scholar 

  32. P. Li, S. Li, Z. Wang, and Z. Zhang, Formation Mechanisms of Cyclic Saturation Dislocation Patterns in [001], [011] and Copper Single Crystals, Acta Mater., 2010, 58(9), p 3281–3294

    Article  CAS  Google Scholar 

  33. S. Qu, X. An, H. Yang, C. Huang, G. Yang, Q. Zang, Z. Wang, S. Wu, and Z. Zhang, Microstructural Evolution and Mechanical Properties Of Cu-Al Alloys Subjected to Equal Channel Angular Pressing, Acta Mater., 2009, 57(5), p 1586–1601

    Article  CAS  Google Scholar 

  34. S. Agnew and J. Weertman, Cyclic Softening of Ultrafine Grain Copper, Mater. Sci. Eng. A, 1998, 244(2), p 145–153

    Article  Google Scholar 

  35. H. Huang, S. Mao, D. Gan, and N. Ho, The Strain Amplitude Controlled Fatigue Behavior of Pure Copper with Ultra Large Grain Size, Mater. Sci. Eng. A, 2013, 559, p 170–177

    Article  CAS  Google Scholar 

  36. D. Kuhlmann-Wilsdorf and C. Laird, Dislocation Behavior in Fatigue V: Breakdown of Loop Patches and Formation of Persistent Slip Bands and of Dislocation Cells, Mater. Sci. Eng., 1980, 46(2), p 209–219

    Article  CAS  Google Scholar 

  37. C. Laird, P. Charsley, and H. Mughrabi, Low Energy Dislocation Structures Produced by Cyclic Deformation, Mater. Sci. Eng., 1986, 81, p 433–450

    Article  CAS  Google Scholar 

  38. C. Liu, M. Bassim, and D. You, Dislocation Structures in Fatigued Polycrystalline Copper, Acta Metall. Mater., 1994, 42(11), p 3695–3704

    Article  CAS  Google Scholar 

  39. M. Czechowski, Low-Cycle Fatigue of Friction Stir Welded Al-Mg Alloys, J. Mater. Process. Technol., 2005, 164, p 1001–1006

    Article  CAS  Google Scholar 

  40. S. Salahi and V. Rezazadeh, Fracture Mechanism in Friction Stir Processed Annealed Pure Copper Samples, World Appl. Sci. J., 2013, 23(12), p 54–58

    Google Scholar 

  41. H. Khodaverdizadeh, A. Mahmoudi, A. Heidarzadeh, and E. Nazari, Effect of Friction Stir Welding (FSW) Parameters on Strain Hardening Behavior of Pure Copper Joints, Mater. Des., 2012, 35, p 330–334

    Article  CAS  Google Scholar 

  42. K. Elangovan and V. Balasubramanian, Influences of pin Profile and Rotational Speed of the Tool on the Formation of Friction Stir Processing Zone in AA2219 Aluminium Alloy, Mater. Sci. Eng. A, 2007, 459(1), p 7–18

    Article  CAS  Google Scholar 

  43. W.-B. Lee and S.-B. Jung, The Joint Properties of Copper by Friction Stir Welding, Mater. Lett., 2004, 58(6), p 1041–1046

    Article  CAS  Google Scholar 

  44. A. Heidarzadeh and T. Saeid, A Comparative Study of Microstructure and Mechanical Properties Between Friction Stir Welded Single and Double Phase Brass Alloys, Mater. Sci. Eng. A, 2016, 649, p 349–358

    Article  CAS  Google Scholar 

  45. S. Begum, D.L. Chen, S. Xu, and A.A. Luo, Low Cycle Fatigue Properties of an Extruded AZ31 Magnesium Alloy, Int. J. Fatigue, 2009, 31(4), p 726–735

    Article  CAS  Google Scholar 

  46. I. Nikulin, T. Sawaguchi, A. Kushibe, Y. Inoue, H. Otsuka, and K. Tsuzaki, Effect of Strain Amplitude on the Low-Cycle Fatigue Behavior of a New Fe-15Mn-10Cr-8Ni-4Si Seismic Damping Alloy, Int. J. Fatigue, 2016, 88, p 132–141

    Article  CAS  Google Scholar 

  47. H.W. Höppel, Z.M. Zhou, H. Mughrabi, and R.Z. Valiev, Microstructural Study of the Parameters Governing Coarsening and Cyclic Softening in Fatigued Ultrafine-Grained Copper, Philos. Mag. A, 2002, 82(9), p 1781–1794

    Article  Google Scholar 

  48. M.W. Kapp, T. Kremmer, C. Motz, B. Yang, and R. Pippan, Structural Instabilities During Cyclic Loading of Ultrafine-Grained Copper Studied with Micro Bending Experiments, Acta Mater., 2017, 125, p 351–358

    Article  CAS  Google Scholar 

  49. C. Feltner and C. Laird, Cyclic Stress-Strain Response of FCC Metals and Alloys: I Phenomenological Experiments, Acta Metall., 1967, 15(10), p 1621–1632

    Article  CAS  Google Scholar 

  50. P. Sanders, J. Eastman, and J. Weertman, Elastic and Tensile Behavior of Nanocrystalline Copper and Palladium, Acta Mater., 1997, 45(10), p 4019–4025

    Article  CAS  Google Scholar 

  51. C. Laird, Z. Wang, B.-T. Ma, and H.-F. Chai, Low energy Dislocation Structures Produced by Cyclic Softening, Mater. Sci. Eng. A, 1989, 113, p 245–257

    Article  Google Scholar 

  52. A. Vinogradov, Y. Kaneko, K. Kitagawa, S. Hashimoto, V. Stolyarov, and R. Valiev, Cyclic Response of Ultrafine-Grained Copper at Constant Plastic Strain Amplitude, Scripta Mater., 1997, 36(11), p 1345–1351

    Article  CAS  Google Scholar 

  53. H. Patel, D. Chen, S. Bhole, and K. Sadayappan, Cyclic Deformation and Twinning in a Semi-Solid Processed AZ91D Magnesium Alloy, Mater. Sci. Eng. A, 2010, 528(1), p 208–219

    Article  CAS  Google Scholar 

  54. S.V. Sajadifar, G.G. Yapici, E. Demler, P. Krooß, T. Wegener, H. Maier, and T. Niendorf, Cyclic Deformation Response of Ultra-Fine Grained Titanium at Elevated Temperatures, Int. J. Fatigue, 2019, 122, p 228–239

    Article  CAS  Google Scholar 

  55. H.-G. Lambers, C. Rüsing, T. Niendorf, D. Geissler, J. Freudenberger, and H. Maier, On the Low-Cycle Fatigue Response of Pre-Strained Austenitic Fe61Mn24Ni6. 5Cr8. 5 Alloy Showing TWIP Effect, Int. J. fatigue, 2012, 40, p 51–60

    Article  CAS  Google Scholar 

  56. S. Begum, D. Chen, S. Xu, and A.A. Luo, Strain-controlled Low-Cycle Fatigue Properties of a Newly Developed Extruded Magnesium Alloy, Metall. Mater. Trans. A, 2008, 39(12), p 3014–3026

    Article  CAS  Google Scholar 

  57. A. Alavi Nia and A. Shirazi, An İnvestigation into the Effect of Welding Parameters on Fatigue Crack Growth Rate and Fracture Toughness in Friction Stir Welded Copper Sheets, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2018, 232(3), p 191–203

    CAS  Google Scholar 

  58. S.-W. Mao, C.-W. Chang, H.-L. Huang, and N.-J. Ho, Evolution of Dislocations in Large Grains of Polycrystalline Copper Under Low Cycle Fatigue with Reduced Strain Amplitude, Mater. Sci. Eng. A, 2010, 527(24), p 6489–6493

    Article  CAS  Google Scholar 

  59. H. Mughrabi, Cyclic Slip Irreversibilities and the Evolution of Fatigue Damage, Metall. Mater. Trans. B., 2009, 40(4), p 431–453

    Article  CAS  Google Scholar 

  60. O.F. Higuera-Cobos, J.A. Berríos-Ortiz, and J.M. Cabrera, Texture and Fatigue Behavior of Ultrafine Grained Copper Produced by ECAP, Mater. Sci. Eng. A, 2014, 609, p 273–282

    Article  CAS  Google Scholar 

  61. S.V. Sajadifar, T. Wegener, G. Yapici, and T. Niendorf, Effect of Grain Size on the Very High Cycle Fatigue Behavior and Notch Sensitivity of Titanium, Theor. Appl. Fract. Mech., 2019, 104, p 102362

    Article  CAS  Google Scholar 

  62. A. Vinogradov, Fatigue Limit, and Crack Growth in Ultra-Fine Grain Metals Produced by Severe Plastic Deformation, J. Mater. Sci., 2007, 42(5), p 1797–1808

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support from Ozyegin University Research Fund is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guney Guven Yapici.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, A., Salahi, S., Radi, A. et al. Low-Cycle Fatigue Behavior of Friction Stir-Welded Copper Joints. J. of Materi Eng and Perform 30, 8643–8651 (2021). https://doi.org/10.1007/s11665-021-06034-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06034-2

Keywords

Navigation