Skip to main content

Advertisement

Log in

Analysis of Corrosion Evolution in Carbon Steel in the Subtropical Atmospheric Environment of Sichuan

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

As a part of Corrosion Map of Sichuan project, atmospheric corrosion behavior of carbon steel was investigated in the subtropical atmospheric environment by weight loss method at five exposure stations. Results indicated that an annual corrosion rate of carbon steel was between 0.66 and 23.6 μm/y. The morphology and composition of corrosion products formed on the exposed steels were identified by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS) and Raman spectroscopy. Subtropical atmospheric corrosion rate of the steel increases in high-rainfall and temperature environment. Bigger and deeper pits are preferred to form in a humid atmosphere. The corrosion products exhibited an uneven distribution and consisted mainly of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), magnetite (Fe3O4) and hematite (Fe2O3). The electrochemical corrosion of carbon steel in solution is an activation-controlled process, and a stable passive region was not observed for the steel. Electrochemical measurements showed that deposits on carbon steel decreased the corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Feliu and M. Morcilio, The Prediction of Atmospheric Corrosion from Meteorological and Pollution Parameters—i. Annual Corrosion, Corros. Sci., 1993, 34, p 403–414.

    Article  CAS  Google Scholar 

  2. S. Feliu and M. Morcilio, The Prediction of Atmospheric Corrosion from Meteorological and Pollution Parameters—ii. Long-term Forecasts, Corros. Sci., 1993, 34, p 415–422.

    Article  CAS  Google Scholar 

  3. C.F. Liang and W.T. Hou, Atmospheric Corrosivity for Steels, J. Chin. Soc. Corros. Prot., 1998, 18, p 1–6.

    CAS  Google Scholar 

  4. F. Corvo, J. Minotas, J. Delgado and C. Arroyave, Changes in Atmospheric Corrosion Rate Caused by Chloride Ions Depending on Rain Regime, Corros. Sci., 2005, 47, p 883–892.

    Article  CAS  Google Scholar 

  5. M. Morcillo, S. Feliu and S. Giménez, Long-term Atmospheric Corrosion of Mild Steel, Zinc, Copper and Aluminium in Spain, Key. Eng. Mater., 1991, 20–28, p 17–26.

    Article  Google Scholar 

  6. M. Morcillo, S. Feliu and J. Simancas, Deviation from Bilogarithmic Law for Atmospheric Corrosion of Steel, Br. Corros. J., 2013, 28, p 50–52.

    Article  Google Scholar 

  7. P. Cui, N.S. Chen, Q. Zou, F.H. Su and Y.L. Zhang, Risk Assessment and Disaster Reduction Strategies for Mountainous and Meteorological Hazards in Tibetan Plateau, Sci. Bull., 2015, 60, p 3067–3077.

    Article  Google Scholar 

  8. Z. Song, G.Z. Zhang and L.W. Jiang, Engineering Geological Features and Geological Route Selection Principle of Sichuan-tibet Railway, Rail. Eng., 2017, 000, p 142–145.

    Google Scholar 

  9. D. Wang, G.Z. Zhang, L.W. Jiang and J. Ouyang, Engineering Effect of Active Fault and Geological Alignment of Chengdu to Kangding in Sichuan-Tibet Railway, J. Rail. Eng. Soc., 2015, 000, p 6–11.

    Google Scholar 

  10. X.S. Xia, S.Y. Dai, X.C. Chen and J.Z. Li, Seismic Design Criterion for Long-span Bridges of Sichuan-Tibet Railway, J. Chin. Rail. Soc., 2016, 38, p 85–89.

    Google Scholar 

  11. X.Q. Cheng, Y.W. Tian, X.G. Li and C. Zhou, Corrosion Behavior of Nickel-Containing Weathering Steel in Simulated Marine Atmospheric Environment, Mater. Corros., 2014, 65, p 1033–1037.

    Article  CAS  Google Scholar 

  12. M. Natesan, G. Venkatachari and N. Palaniswamy, Kinetics of Atmospheric Corrosion of Mild Steel, Zinc, Galvanized Iron and Aluminium at 10 Exposure Stations in India, Corros. Sci., 2006, 48, p 3584–3608.

    Article  CAS  Google Scholar 

  13. W. Wu, X.Q. Cheng, H. Hou, B. Liu and X.G. Li, Insight into the Product Film Formed on Ni-advanced Weathering Steel in a Tropical Marine Atmosphere, Appl. Surf. Sci., 2018, 436, p 80–89.

    Article  CAS  Google Scholar 

  14. C. Wang, G.W. Cao, C. Pan, Z.R. Wang and M.R. Miao, Atmospheric Corroison of Carbon Steel and Weathering Steel in Three Environments, J. Chin. Soc. Corros. Prot., 2016, 36, p 39–46.

    Google Scholar 

  15. Q. Yu, C.F. Dong, Y.H. Fang, K. Xiao, C.Y. Guo, G. He and X.G. Li, Atmospheric Corrosion of q235 Carbon Steel and q450 Weathering Steel in Turpan, China, J. Iron. Steel. Res. Int., 2016, 23, p 1061–1070.

    Article  Google Scholar 

  16. X.C. Hao, X.G. Li, K. Xiao and C.F. Dong, Corrosion Behaviors at the Initial Stage of q235 Steel in Xisha Atmosphere, J. Chin. Soc. Corros. Prot., 2009, 29, p 465–470.

    CAS  Google Scholar 

  17. S. Oesch and P. Heimgariner, Environmental Effects on Metallic Materials - Results of an Outdoor Exposure Programme Running in Switzerland, Mater. Corros., 1996, 47, p 425–438.

    Article  CAS  Google Scholar 

  18. P.S. Mohan, M. Natesan, M. Sundaram and K. Balakrishnan, Atmospheric Corrosion at Different Locations in South India, Bull. Electrochem., 1996, 12, p 91–92.

    CAS  Google Scholar 

  19. Z.Y. Cui, X.G. Li, C. Man, K. Xiao, C.F. Dong, X. Wang and Z.Y. Liu, Exfoliation Corrosion Behavior of 2B06 Aluminum Alloy in a Tropical Marine Atmosphere, J. Mater. Eng. Perform., 2015, 24, p 296–306.

    Article  CAS  Google Scholar 

  20. D.C. Kong, C.F. Dong, Y.H. Fang, K. Xiao, C.Y. Guo, G. He and X.G. Li, Copper Corrosion in Hot and Dry Atmosphere Environment in Turpan, China, Trans. Nonferrous. Met. Soc. China., 2016, 26, p 1721–1728.

    Article  CAS  Google Scholar 

  21. Z.Y. Cui, K. Xiao, C.F. Dong, T.Y. Cui and X.G. Li, Long-term Corrosion Behavior of AZ31 Magnesium Alloy in Xisha Marine Atmosphere, J. Univ. Sci. Technol., 2014, 36, p 339–344.

    CAS  Google Scholar 

  22. X.Q. Cheng, Z. Jin, M. Liu and X.G. Li, Optimizing the Nickel Content in Weathering Steels to Enhance their Corrosion Resistance in Acidic Atmospheres, Corros. Sci., 2017, 115, p 135–142.

    Article  CAS  Google Scholar 

  23. Q. Hou, Z.Y. Liu, C.T. Li and X.G. Li, Degradation of the Oxide Film Formed on Alloy 690TT in a High-temperature Chloride Solution, Appl. Surf. Sci., 2019, 467–468, p 1104–1112.

    Article  Google Scholar 

  24. GB/T 16545-2015 Chinese National Standard for Corrosion of Metals and Alloys — Removal of Corrosion Products from Corrosion Test Specimens, China State Bureau of Technical Supervision, Beijing, China, (2015)

  25. A. Demoulin, C. Trigance and D. Neff, The Evolution of the Corrosion of Iron in Hydraulic Binders Analysed from 46- and 260-Year-Old Buildings, Corros. Sci., 2010, 52, p 3168–3179.

    Article  CAS  Google Scholar 

  26. L.J. Oblonsky and T.M. Devine, Corrosion of Carbon Steels in CO2-Saturated Brine, J. Electrochem. Soc., 1997, 144, p 1252–1260.

    Article  CAS  Google Scholar 

  27. GB/T 19292.1-2003 Chinese National Standard for Corrosion of Metals and Alloys — Corrosivity of atmospheres-Classification, China State Bureau of Technical Supervision, Beijing, China, (2003)

  28. S.J. Oh, D.C. Cook and H.E. Townsend, Atmospheric Corrosion of Different Steels in Marine, Rural and Industrial Environments, Corros. Sci., 1999, 41, p 1687–1702.

    Article  CAS  Google Scholar 

  29. F.P. Fehlner and N.F. Mott, Low-temperature Oxidation, Oxidation. Met., 1970, 2, p 59–99.

    Article  CAS  Google Scholar 

  30. H. Antony, S. Perrin, P. Dillmann, L. Legranda and A. Chausse, Electrochemical Study of Indoor Atmospheric Corrosion Layers Formed on Ancient Iron Artefacts, Electrochim. Acta, 2007, 52, p 7754–7759.

    Article  CAS  Google Scholar 

  31. D.C. Kong, C.F. Dong, X.Q. Ni and X.G. Li, Corrosion of Metallic Materials Fabricated by Selective Laser Melting, Npj Material Degradation, 2019, 3, p p1-14.

    Article  Google Scholar 

  32. K. Xiao, C.F. Dong, X.G. Li and F.M. Wang, Corrosion Products and Formation Mechanism during Initial Stage of Atmospheric Corrosion of Carbon Steel, J. Iron Steel Res. Int, 2008, 15, p p42-48.

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the Fundamental Research Funds for the Central Universities (No. FRF-MP-18-002) and the Science and Technology Project of State Grid Sichuan Electric Power Corporation of China (No. 521997160013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuiwei Du.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai, C., Wang, Z., Lu, F. et al. Analysis of Corrosion Evolution in Carbon Steel in the Subtropical Atmospheric Environment of Sichuan. J. of Materi Eng and Perform 30, 8014–8022 (2021). https://doi.org/10.1007/s11665-021-06019-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06019-1

Keywords

Navigation